File size: 1,193 Bytes
0356b85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import os
import gradio as gr
from langchain_community.llms import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
# Initialize the chatbot
HF_TOKEN = os.getenv("HF_TOKEN")
llm = HuggingFaceEndpoint(
repo_id="google/gemma-1.1-7b-it",
task="text-generation",
max_new_tokens=512,
top_k=5,
temperature=0.1,
repetition_penalty=1.03,
huggingfacehub_api_token=HF_TOKEN
)
template = """
You are a Mental Health Chatbot. Help the user with their mental health concerns.
Use the context below to answer the questions {context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)
def predict(message, history):
input_prompt = QA_CHAIN_PROMPT.format(question=message, context=history)
result = llm.generate([input_prompt])
print(result) # Print the result for inspection
# Access the generated text using the correct attribute(s)
if result.generations:
ai_msg = result.generations[0][0].text
else:
ai_msg = "I'm sorry, I couldn't generate a response for that input."
return ai_msg
gr.ChatInterface(predict).launch()
|