File size: 1,193 Bytes
0356b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import os
import gradio as gr
from langchain_community.llms import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate

# Initialize the chatbot
HF_TOKEN = os.getenv("HF_TOKEN")
llm = HuggingFaceEndpoint(
    repo_id="google/gemma-1.1-7b-it",
    task="text-generation",
    max_new_tokens=512,
    top_k=5,
    temperature=0.1,
    repetition_penalty=1.03,
    huggingfacehub_api_token=HF_TOKEN
)
template = """
You are a Mental Health Chatbot. Help the user with their mental health concerns. 
Use the context below to answer the questions {context} 
Question: {question} 
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)

def predict(message, history):
    input_prompt = QA_CHAIN_PROMPT.format(question=message, context=history)
    result = llm.generate([input_prompt])
    print(result)  # Print the result for inspection
    
    # Access the generated text using the correct attribute(s)
    if result.generations:
        ai_msg = result.generations[0][0].text
    else:
        ai_msg = "I'm sorry, I couldn't generate a response for that input."
    
    return ai_msg


gr.ChatInterface(predict).launch()