Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,131 +1,48 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from langchain_community.document_loaders import PyPDFLoader
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
-
|
11 |
-
from langchain.text_splitter import CharacterTextSplitter
|
12 |
-
from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain
|
13 |
-
|
14 |
-
# Set up logging
|
15 |
-
logging.basicConfig(level=logging.INFO)
|
16 |
-
logger = logging.getLogger(__name__)
|
17 |
-
|
18 |
-
# Constants
|
19 |
-
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
20 |
-
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
21 |
-
DEFAULT_MODEL = "facebook/bart-large-cnn"
|
22 |
-
|
23 |
-
# Default model parameters
|
24 |
-
DEFAULT_PARAMS = {
|
25 |
-
"temperature": 0.7,
|
26 |
-
"max_length": 1024,
|
27 |
-
"num_beams": 4,
|
28 |
-
"top_p": 0.95,
|
29 |
-
"repetition_penalty": 1.2,
|
30 |
-
}
|
31 |
-
|
32 |
-
def get_default_value(param_name: str, default: float) -> float:
|
33 |
-
"""Safely get a float value from DEFAULT_PARAMS."""
|
34 |
-
value = DEFAULT_PARAMS.get(param_name, default)
|
35 |
-
return float(value) if not isinstance(value, list) else float(value[0]) if value else default
|
36 |
-
|
37 |
-
def load_embeddings():
|
38 |
-
"""Load and cache the embedding model."""
|
39 |
-
try:
|
40 |
-
return SentenceTransformer(EMBEDDING_MODEL)
|
41 |
-
except Exception as e:
|
42 |
-
logger.error(f"Failed to load embeddings: {e}")
|
43 |
-
raise
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
params = custom_params or DEFAULT_PARAMS
|
49 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
-
return pipeline("summarization", model=model, tokenizer=tokenizer, **params)
|
52 |
-
except Exception as e:
|
53 |
-
logger.error(f"Failed to load LLM: {e}")
|
54 |
-
raise
|
55 |
|
56 |
-
def
|
57 |
-
"""Process the PDF and convert it into a list of Document objects."""
|
58 |
try:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
except Exception as e:
|
63 |
-
logger.error(f"Error processing PDF: {e}")
|
64 |
-
raise
|
65 |
-
|
66 |
-
def create_vector_store(documents: List[Document], embeddings):
|
67 |
-
"""Create and save the vector store."""
|
68 |
-
try:
|
69 |
-
db = FAISS.from_documents(documents, embeddings)
|
70 |
-
db.save_local(DB_FAISS_PATH)
|
71 |
-
return db
|
72 |
-
except Exception as e:
|
73 |
-
logger.error(f"Error creating vector store: {e}")
|
74 |
-
raise
|
75 |
|
76 |
-
|
77 |
-
"""Summarize the report using a map-reduce approach."""
|
78 |
-
try:
|
79 |
-
# Limit the number of chunks to process
|
80 |
-
max_chunks = 50 # Adjust this value based on your needs
|
81 |
-
if len(documents) > max_chunks:
|
82 |
-
logger.warning(f"Document is very large. Summarizing first {max_chunks} chunks only.")
|
83 |
-
documents = documents[:max_chunks]
|
84 |
-
|
85 |
-
# Map prompt
|
86 |
map_template = """Summarize the following text:\n\n{text}\n\nSummary:"""
|
87 |
map_prompt = PromptTemplate.from_template(map_template)
|
88 |
-
|
89 |
-
# Reduce prompt
|
90 |
-
reduce_template = """Combine these summaries into a final summary:\n\nSummary:\n{doc_summaries}\n\nFinal Summary:"""
|
91 |
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
)
|
100 |
-
|
101 |
-
summary = map_chain.run(documents)
|
102 |
-
|
103 |
return summary
|
104 |
-
|
105 |
-
except Exception as e:
|
106 |
-
logger.error(f"Error summarizing report: {e}")
|
107 |
-
raise
|
108 |
-
|
109 |
-
def main(pdf_path: str, model_name: str = DEFAULT_MODEL):
|
110 |
-
"""Main function to summarize the PDF report."""
|
111 |
-
try:
|
112 |
-
# Load models and embeddings
|
113 |
-
embeddings = load_embeddings()
|
114 |
-
llm = load_llm(model_name)
|
115 |
-
|
116 |
-
# Process the PDF
|
117 |
-
documents = process_pdf(pdf_path)
|
118 |
-
|
119 |
-
# Create vector store
|
120 |
-
create_vector_store(documents, embeddings)
|
121 |
-
|
122 |
-
# Generate summary
|
123 |
-
summary = summarize_report(documents, llm)
|
124 |
-
|
125 |
-
print("Structured Summary:\n", summary)
|
126 |
except Exception as e:
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.llms import HuggingFaceLLM
|
5 |
+
from langchain.chains import MapReduceChain
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Load model and embeddings
|
12 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", device="cpu")
|
13 |
+
llm = HuggingFaceLLM.from_pretrained("your-model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
def process_pdf_and_summarize(file):
|
|
|
16 |
try:
|
17 |
+
# Load PDF document
|
18 |
+
loader = PyPDFLoader(file.name)
|
19 |
+
documents = loader.load()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Summarize the document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
map_template = """Summarize the following text:\n\n{text}\n\nSummary:"""
|
23 |
map_prompt = PromptTemplate.from_template(map_template)
|
24 |
+
reduce_template = """Combine these summaries into a final summary:\n\nSummaries: {doc_summaries}\n\nFinal Summary:"""
|
|
|
|
|
25 |
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
26 |
|
27 |
+
chain = MapReduceChain.from_chain_type(
|
28 |
+
llm=llm,
|
29 |
+
chain_type="map_reduce",
|
30 |
+
map_prompt=map_prompt,
|
31 |
+
reduce_prompt=reduce_prompt,
|
32 |
+
text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
33 |
)
|
34 |
+
summary = chain.run(documents)
|
|
|
|
|
35 |
return summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
except Exception as e:
|
37 |
+
return f"Error processing PDF: {str(e)}"
|
38 |
+
|
39 |
+
# Gradio interface
|
40 |
+
interface = gr.Interface(
|
41 |
+
fn=process_pdf_and_summarize,
|
42 |
+
inputs=gr.inputs.File(label="Upload PDF"),
|
43 |
+
outputs="text",
|
44 |
+
title="PDF Summarizer",
|
45 |
+
description="Upload a PDF document to generate a summary."
|
46 |
+
)
|
47 |
+
|
48 |
+
interface.launch()
|