import gradio as gr from fastai.vision.all import * from huggingface_hub import from_pretrained_fastai import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learn = from_pretrained_fastai(repo_id = "KathrynMercer/BoneClassifier") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i].title(): float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, inputs='image', outputs='label', title = 'Human vs Nonhuman Long Bone Classifier', description = 'A computer vision classifier to determine if an image of a long bone is more likely human or non-human origin. Use at your own risk.', examples = [r'test human femur - Swedish History Museum.jpg'],).launch(share=True)