Proyecto2IA / app.py
Katon1's picture
Update app.py
a22bb25 verified
raw
history blame
4.43 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import time
# Obt茅n el token de manera segura desde el entorno
hf_token = os.getenv("HF_API_TOKEN")
# Clase para manejar m煤ltiples modelos
class ModelHandler:
def __init__(self, model_names, token):
self.clients = {model_name: InferenceClient(model_name, token=token) for model_name in model_names}
self.current_model = model_names[0]
def switch_model(self, model_name):
if model_name in self.clients:
self.current_model = model_name
else:
raise ValueError(f"Modelo {model_name} no est谩 disponible.")
def generate_response(self, input_text):
prompt = f"Debes de responder a cualquier pregunta:\nPregunta: {input_text}"
try:
messages = [{"role": "user", "content": prompt}]
client = self.clients[self.current_model]
response = client.chat_completion(messages=messages, max_tokens=500)
if hasattr(response, 'choices') and response.choices:
return response.choices[0].message.content
else:
return str(response)
except Exception as e:
return f"Error al realizar la inferencia: {e}"
# Lista de modelos disponibles
model_names = [
"microsoft/Phi-3-mini-4k-instruct"
]
# Inicializa el manejador de modelos
model_handler = ModelHandler(model_names, hf_token)
# Define la funci贸n para generaci贸n de im谩genes con progreso
def generate_image_with_progress(prompt):
"""
Genera una imagen utilizando el modelo de "stabilityai/stable-diffusion-2" y muestra un progreso.
"""
try:
client = InferenceClient("stabilityai/stable-diffusion-2", token=hf_token)
# Simular progreso
for progress in range(0, 101, 20):
time.sleep(0.5)
yield f"Generando imagen... {progress}% completado", None
image = client.text_to_image(prompt, width=512, height=512)
yield "Imagen generada con 茅xito", image
except Exception as e:
yield f"Error al generar la imagen: {e}", None
# Configura la interfaz en Gradio con selecci贸n de modelos y generaci贸n de im谩genes
with gr.Blocks(title="Multi-Model LLM Chatbot with Image Generation") as demo:
gr.Markdown(
"""
## Chatbot Multi-Modelo LLM con Generaci贸n de Im谩genes
Este chatbot permite elegir entre m煤ltiples modelos de lenguaje para responder preguntas o generar im谩genes
a partir de descripciones.
"""
)
with gr.Row():
model_dropdown = gr.Dropdown(
choices=model_names + ["Generaci贸n de Im谩genes"],
value=model_names[0],
label="Seleccionar Acci贸n/Modelo",
interactive=True
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
lines=5,
placeholder="Escribe tu consulta o descripci贸n para la imagen...",
label="Entrada"
)
with gr.Column():
output_display = gr.Textbox(
lines=5,
label="Estado",
interactive=False
)
output_image = gr.Image(
label="Imagen Generada",
interactive=False
)
submit_button = gr.Button("Enviar")
# Define la funci贸n de actualizaci贸n
def process_input(selected_action, user_input):
try:
if selected_action == "Generaci贸n de Im谩genes":
# Manejamos el generador de progreso
progress_generator = generate_image_with_progress(user_input)
last_status = None
last_image = None
for status, image in progress_generator:
last_status = status
last_image = image
return last_status, last_image
else:
model_handler.switch_model(selected_action)
response = model_handler.generate_response(user_input)
return response, None
except Exception as e:
return f"Error: {e}", None
# Conecta la funci贸n a los componentes
submit_button.click(
fn=process_input,
inputs=[model_dropdown, input_text],
outputs=[output_display, output_image]
)
# Lanza la interfaz
demo.launch()