Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import time | |
# Obt茅n el token de manera segura desde el entorno | |
hf_token = os.getenv("HF_API_TOKEN") | |
# Clase para manejar m煤ltiples modelos | |
class ModelHandler: | |
def __init__(self, model_names, token): | |
self.clients = {model_name: InferenceClient(model_name, token=token) for model_name in model_names} | |
self.current_model = model_names[0] | |
def switch_model(self, model_name): | |
if model_name in self.clients: | |
self.current_model = model_name | |
else: | |
raise ValueError(f"Modelo {model_name} no est谩 disponible.") | |
def generate_response(self, input_text): | |
prompt = f"Debes de responder a cualquier pregunta:\nPregunta: {input_text}" | |
try: | |
messages = [{"role": "user", "content": prompt}] | |
client = self.clients[self.current_model] | |
response = client.chat_completion(messages=messages, max_tokens=500) | |
if hasattr(response, 'choices') and response.choices: | |
return response.choices[0].message.content | |
else: | |
return str(response) | |
except Exception as e: | |
return f"Error al realizar la inferencia: {e}" | |
# Lista de modelos disponibles | |
model_names = [ | |
"microsoft/Phi-3-mini-4k-instruct" | |
] | |
# Inicializa el manejador de modelos | |
model_handler = ModelHandler(model_names, hf_token) | |
# Define la funci贸n para generaci贸n de im谩genes con progreso | |
def generate_image_with_progress(prompt): | |
""" | |
Genera una imagen utilizando el modelo de "stabilityai/stable-diffusion-2" y muestra un progreso. | |
""" | |
try: | |
client = InferenceClient("stabilityai/stable-diffusion-2", token=hf_token) | |
# Simular progreso | |
for progress in range(0, 101, 20): | |
time.sleep(0.5) | |
yield f"Generando imagen... {progress}% completado", None | |
image = client.text_to_image(prompt, width=512, height=512) | |
yield "Imagen generada con 茅xito", image | |
except Exception as e: | |
yield f"Error al generar la imagen: {e}", None | |
# Configura la interfaz en Gradio con selecci贸n de modelos y generaci贸n de im谩genes | |
with gr.Blocks(title="Multi-Model LLM Chatbot with Image Generation") as demo: | |
gr.Markdown( | |
""" | |
## Chatbot Multi-Modelo LLM con Generaci贸n de Im谩genes | |
Este chatbot permite elegir entre m煤ltiples modelos de lenguaje para responder preguntas o generar im谩genes | |
a partir de descripciones. | |
""" | |
) | |
with gr.Row(): | |
model_dropdown = gr.Dropdown( | |
choices=model_names + ["Generaci贸n de Im谩genes"], | |
value=model_names[0], | |
label="Seleccionar Acci贸n/Modelo", | |
interactive=True | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox( | |
lines=5, | |
placeholder="Escribe tu consulta o descripci贸n para la imagen...", | |
label="Entrada" | |
) | |
with gr.Column(): | |
output_display = gr.Textbox( | |
lines=5, | |
label="Estado", | |
interactive=False | |
) | |
output_image = gr.Image( | |
label="Imagen Generada", | |
interactive=False | |
) | |
submit_button = gr.Button("Enviar") | |
# Define la funci贸n de actualizaci贸n | |
def process_input(selected_action, user_input): | |
try: | |
if selected_action == "Generaci贸n de Im谩genes": | |
# Manejamos el generador de progreso | |
progress_generator = generate_image_with_progress(user_input) | |
last_status = None | |
last_image = None | |
for status, image in progress_generator: | |
last_status = status | |
last_image = image | |
return last_status, last_image | |
else: | |
model_handler.switch_model(selected_action) | |
response = model_handler.generate_response(user_input) | |
return response, None | |
except Exception as e: | |
return f"Error: {e}", None | |
# Conecta la funci贸n a los componentes | |
submit_button.click( | |
fn=process_input, | |
inputs=[model_dropdown, input_text], | |
outputs=[output_display, output_image] | |
) | |
# Lanza la interfaz | |
demo.launch() | |