Kaushik066 commited on
Commit
594d6e4
·
1 Parent(s): c217093

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -14
app.py CHANGED
@@ -257,8 +257,8 @@ def play_video(selected_video):
257
  def translate_sign_language(gesture):
258
  # Create Dataset
259
  prod_ds = dataset_prod_obj.create_dataset(gesture)
260
- #prod_video = tensor_to_video(prod_ds)
261
- prod_video = np.random.randint(0, 255, (32, 225, 225, 3), dtype=np.uint8)
262
 
263
  # Run ML Model
264
  predicted_prod_label = prod_function(model_pretrained, prod_ds)
@@ -269,30 +269,32 @@ def translate_sign_language(gesture):
269
  idx_to_label = model_pretrained.config.id2label
270
  gesture_translation = idx_to_label[predicted_prod_label.cpu().numpy().item()] # Convert to a scalar
271
 
272
- ## Frame generator for real-time streaming
273
- #def frame_generator():
274
- # for frame in prod_video:
275
- # yield frame # Stream frame-by-frame
276
 
277
- return gesture_translation , prod_video#, frame_generator
278
 
279
  with gr.Blocks() as demo:
280
  gr.Markdown("# Indian Sign Language Translation App")
281
 
282
  # Gesture recognition Tab
283
  with gr.Tab("Gesture recognition"):
284
- with gr.Row(height=300, variant="panel", equal_height=False, show_progress=True):
285
  with gr.Column(scale=1, variant="panel"):
286
  # Add webcam input for sign language video capture
287
  video_input = gr.Video(format="mp4", label="Gesture")
288
  with gr.Column(scale=1, variant="panel"):
289
  # Display the landmarked video
290
- video_output = gr.Video(streaming=False, label="Landmarked Gesture")
291
- with gr.Row(variant="panel", equal_height=False, show_progress=True):
292
- # Submit the Video
293
- video_button = gr.Button("Submit")
294
- # Add a button or functionality to process the video
295
- text_output = gr.Textbox(label="Translation in English")
 
 
296
  # Set up the interface
297
  video_button.click(translate_sign_language, inputs=video_input, outputs=[text_output, video_output])
298
 
 
257
  def translate_sign_language(gesture):
258
  # Create Dataset
259
  prod_ds = dataset_prod_obj.create_dataset(gesture)
260
+ prod_video = tensor_to_video(prod_ds)
261
+ #prod_video = np.random.randint(0, 255, (32, 225, 225, 3), dtype=np.uint8)
262
 
263
  # Run ML Model
264
  predicted_prod_label = prod_function(model_pretrained, prod_ds)
 
269
  idx_to_label = model_pretrained.config.id2label
270
  gesture_translation = idx_to_label[predicted_prod_label.cpu().numpy().item()] # Convert to a scalar
271
 
272
+ # Frame generator for real-time streaming
273
+ def frame_generator():
274
+ for frame in prod_video:
275
+ yield frame # Stream frame-by-frame
276
 
277
+ return gesture_translation , frame_generator #prod_video
278
 
279
  with gr.Blocks() as demo:
280
  gr.Markdown("# Indian Sign Language Translation App")
281
 
282
  # Gesture recognition Tab
283
  with gr.Tab("Gesture recognition"):
284
+ with gr.Row(height=300, variant="panel"): # equal_height=False, show_progress=True
285
  with gr.Column(scale=1, variant="panel"):
286
  # Add webcam input for sign language video capture
287
  video_input = gr.Video(format="mp4", label="Gesture")
288
  with gr.Column(scale=1, variant="panel"):
289
  # Display the landmarked video
290
+ video_output = gr.Video(streaming=True, label="Landmarked Gesture")
291
+ with gr.Row(variant="panel"): # equal_height=False, show_progress=True
292
+ with gr.Column(scale=1, variant="panel"):
293
+ # Submit the Video
294
+ video_button = gr.Button("Submit")
295
+ with gr.Column(scale=1, variant="panel"):
296
+ # Add a button or functionality to process the video
297
+ text_output = gr.Textbox(label="Translation in English")
298
  # Set up the interface
299
  video_button.click(translate_sign_language, inputs=video_input, outputs=[text_output, video_output])
300