Commit
·
75d7cea
1
Parent(s):
78763ed
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
import torch
|
3 |
# For data transformation
|
4 |
from torchvision import transforms
|
|
|
5 |
# For ML Model
|
6 |
import transformers
|
7 |
from transformers import VivitImageProcessor, VivitConfig, VivitModel
|
@@ -113,10 +114,15 @@ class CreateDatasetProd():
|
|
113 |
self.frame_step = frame_step
|
114 |
|
115 |
# Define a sample transformation pipeline
|
116 |
-
self.transform_prod = transforms.v2.Compose([
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
120 |
])
|
121 |
|
122 |
def read_video(self, video_path):
|
@@ -182,7 +188,8 @@ class CreateDatasetProd():
|
|
182 |
# Read and process Videos
|
183 |
video = self.read_video(video_paths)
|
184 |
video = torch.from_numpy(video.asnumpy())
|
185 |
-
video = transforms.v2.functional.resize(video.permute(0, 3, 1, 2), size=(self.clip_size*2, self.clip_size*3)) # Auto converts to (F, C, H, W) format
|
|
|
186 |
video = self.add_landmarks(video)
|
187 |
# Data Preperation for ML Model without Augmentation
|
188 |
video = self.transform_prod(video.permute(0, 3, 1, 2))
|
|
|
2 |
import torch
|
3 |
# For data transformation
|
4 |
from torchvision import transforms
|
5 |
+
from torchvision.transforms import v2
|
6 |
# For ML Model
|
7 |
import transformers
|
8 |
from transformers import VivitImageProcessor, VivitConfig, VivitModel
|
|
|
114 |
self.frame_step = frame_step
|
115 |
|
116 |
# Define a sample transformation pipeline
|
117 |
+
#self.transform_prod = transforms.v2.Compose([
|
118 |
+
# transforms.v2.ToImage(),
|
119 |
+
# transforms.v2.Resize((self.clip_size, self.clip_size)),
|
120 |
+
# transforms.v2.ToDtype(torch.float32, scale=True)
|
121 |
+
# ])
|
122 |
+
self.transform_prod = v2.Compose([
|
123 |
+
v2.ToImage(),
|
124 |
+
v2.Resize((self.clip_size, self.clip_size)),
|
125 |
+
v2.ToDtype(torch.float32, scale=True)
|
126 |
])
|
127 |
|
128 |
def read_video(self, video_path):
|
|
|
188 |
# Read and process Videos
|
189 |
video = self.read_video(video_paths)
|
190 |
video = torch.from_numpy(video.asnumpy())
|
191 |
+
#video = transforms.v2.functional.resize(video.permute(0, 3, 1, 2), size=(self.clip_size*2, self.clip_size*3)) # Auto converts to (F, C, H, W) format
|
192 |
+
video = v2.functional.resize(video.permute(0, 3, 1, 2), size=(self.clip_size*2, self.clip_size*3)) # Auto converts to (F, C, H, W) format
|
193 |
video = self.add_landmarks(video)
|
194 |
# Data Preperation for ML Model without Augmentation
|
195 |
video = self.transform_prod(video.permute(0, 3, 1, 2))
|