Kaushik066 commited on
Commit
75d7cea
·
1 Parent(s): 78763ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -2,6 +2,7 @@
2
  import torch
3
  # For data transformation
4
  from torchvision import transforms
 
5
  # For ML Model
6
  import transformers
7
  from transformers import VivitImageProcessor, VivitConfig, VivitModel
@@ -113,10 +114,15 @@ class CreateDatasetProd():
113
  self.frame_step = frame_step
114
 
115
  # Define a sample transformation pipeline
116
- self.transform_prod = transforms.v2.Compose([
117
- transforms.v2.ToImage(),
118
- transforms.v2.Resize((self.clip_size, self.clip_size)),
119
- transforms.v2.ToDtype(torch.float32, scale=True)
 
 
 
 
 
120
  ])
121
 
122
  def read_video(self, video_path):
@@ -182,7 +188,8 @@ class CreateDatasetProd():
182
  # Read and process Videos
183
  video = self.read_video(video_paths)
184
  video = torch.from_numpy(video.asnumpy())
185
- video = transforms.v2.functional.resize(video.permute(0, 3, 1, 2), size=(self.clip_size*2, self.clip_size*3)) # Auto converts to (F, C, H, W) format
 
186
  video = self.add_landmarks(video)
187
  # Data Preperation for ML Model without Augmentation
188
  video = self.transform_prod(video.permute(0, 3, 1, 2))
 
2
  import torch
3
  # For data transformation
4
  from torchvision import transforms
5
+ from torchvision.transforms import v2
6
  # For ML Model
7
  import transformers
8
  from transformers import VivitImageProcessor, VivitConfig, VivitModel
 
114
  self.frame_step = frame_step
115
 
116
  # Define a sample transformation pipeline
117
+ #self.transform_prod = transforms.v2.Compose([
118
+ # transforms.v2.ToImage(),
119
+ # transforms.v2.Resize((self.clip_size, self.clip_size)),
120
+ # transforms.v2.ToDtype(torch.float32, scale=True)
121
+ # ])
122
+ self.transform_prod = v2.Compose([
123
+ v2.ToImage(),
124
+ v2.Resize((self.clip_size, self.clip_size)),
125
+ v2.ToDtype(torch.float32, scale=True)
126
  ])
127
 
128
  def read_video(self, video_path):
 
188
  # Read and process Videos
189
  video = self.read_video(video_paths)
190
  video = torch.from_numpy(video.asnumpy())
191
+ #video = transforms.v2.functional.resize(video.permute(0, 3, 1, 2), size=(self.clip_size*2, self.clip_size*3)) # Auto converts to (F, C, H, W) format
192
+ video = v2.functional.resize(video.permute(0, 3, 1, 2), size=(self.clip_size*2, self.clip_size*3)) # Auto converts to (F, C, H, W) format
193
  video = self.add_landmarks(video)
194
  # Data Preperation for ML Model without Augmentation
195
  video = self.transform_prod(video.permute(0, 3, 1, 2))