Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,12 @@ from detoxify import Detoxify
|
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import torch
|
6 |
|
7 |
-
# Load models
|
8 |
tox_model = Detoxify('multilingual')
|
9 |
ai_tokenizer = AutoTokenizer.from_pretrained("openai-community/roberta-base-openai-detector")
|
10 |
ai_model = AutoModelForSequenceClassification.from_pretrained("openai-community/roberta-base-openai-detector")
|
11 |
|
|
|
12 |
TOXICITY_THRESHOLD = 0.7
|
13 |
AI_THRESHOLD = 0.5
|
14 |
|
@@ -16,27 +17,30 @@ def detect_ai(text):
|
|
16 |
with torch.no_grad():
|
17 |
inputs = ai_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
18 |
logits = ai_model(**inputs).logits
|
19 |
-
|
20 |
-
return round(
|
21 |
|
22 |
def classify_comments(comment_list):
|
23 |
results = tox_model.predict(comment_list)
|
24 |
df = pd.DataFrame(results, index=comment_list).round(4)
|
25 |
df.columns = [col.replace("_", " ").title().replace(" ", "_") for col in df.columns]
|
26 |
df.columns = [col.replace("_", " ") for col in df.columns]
|
27 |
-
df["⚠️ Warning"] = df.apply(
|
|
|
|
|
|
|
28 |
df["🧪 AI Probability"] = [detect_ai(c) for c in df.index]
|
29 |
-
df["🧪 AI Detection"] = df["🧪 AI Probability"].apply(
|
|
|
|
|
30 |
return df
|
31 |
|
32 |
def run_classification(text_input, csv_file):
|
33 |
comment_list = []
|
34 |
|
35 |
-
# From text input
|
36 |
if text_input.strip():
|
37 |
comment_list += [c.strip() for c in text_input.strip().split('\n') if c.strip()]
|
38 |
|
39 |
-
# From CSV
|
40 |
if csv_file:
|
41 |
df = pd.read_csv(csv_file.name)
|
42 |
if 'comment' not in df.columns:
|
@@ -51,20 +55,20 @@ def run_classification(text_input, csv_file):
|
|
51 |
csv_data.insert(0, "Comment", df.index)
|
52 |
return df, ("toxicity_predictions.csv", csv_data.to_csv(index=False).encode())
|
53 |
|
54 |
-
# UI
|
55 |
with gr.Blocks(title="🌍 Toxic Comment & AI Detector") as app:
|
56 |
gr.Markdown("## 🌍 Toxic Comment & AI Detector")
|
57 |
-
gr.Markdown("Detects multilingual toxicity and whether
|
58 |
|
59 |
with gr.Row():
|
60 |
-
text_input = gr.Textbox(lines=8, label="💬
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
output_table = gr.Dataframe(label="📊 Results")
|
65 |
-
|
66 |
|
67 |
-
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
app.launch()
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import torch
|
6 |
|
7 |
+
# Load models once
|
8 |
tox_model = Detoxify('multilingual')
|
9 |
ai_tokenizer = AutoTokenizer.from_pretrained("openai-community/roberta-base-openai-detector")
|
10 |
ai_model = AutoModelForSequenceClassification.from_pretrained("openai-community/roberta-base-openai-detector")
|
11 |
|
12 |
+
# Thresholds
|
13 |
TOXICITY_THRESHOLD = 0.7
|
14 |
AI_THRESHOLD = 0.5
|
15 |
|
|
|
17 |
with torch.no_grad():
|
18 |
inputs = ai_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
19 |
logits = ai_model(**inputs).logits
|
20 |
+
probs = torch.softmax(logits, dim=1).squeeze().tolist()
|
21 |
+
return round(probs[1], 4) # Probability of AI-generated
|
22 |
|
23 |
def classify_comments(comment_list):
|
24 |
results = tox_model.predict(comment_list)
|
25 |
df = pd.DataFrame(results, index=comment_list).round(4)
|
26 |
df.columns = [col.replace("_", " ").title().replace(" ", "_") for col in df.columns]
|
27 |
df.columns = [col.replace("_", " ") for col in df.columns]
|
28 |
+
df["⚠️ Warning"] = df.apply(
|
29 |
+
lambda row: "⚠️ High Risk" if any(score > TOXICITY_THRESHOLD for score in row) else "✅ Safe",
|
30 |
+
axis=1
|
31 |
+
)
|
32 |
df["🧪 AI Probability"] = [detect_ai(c) for c in df.index]
|
33 |
+
df["🧪 AI Detection"] = df["🧪 AI Probability"].apply(
|
34 |
+
lambda x: "🤖 Likely AI" if x > AI_THRESHOLD else "🧍 Human"
|
35 |
+
)
|
36 |
return df
|
37 |
|
38 |
def run_classification(text_input, csv_file):
|
39 |
comment_list = []
|
40 |
|
|
|
41 |
if text_input.strip():
|
42 |
comment_list += [c.strip() for c in text_input.strip().split('\n') if c.strip()]
|
43 |
|
|
|
44 |
if csv_file:
|
45 |
df = pd.read_csv(csv_file.name)
|
46 |
if 'comment' not in df.columns:
|
|
|
55 |
csv_data.insert(0, "Comment", df.index)
|
56 |
return df, ("toxicity_predictions.csv", csv_data.to_csv(index=False).encode())
|
57 |
|
58 |
+
# Build the Gradio UI
|
59 |
with gr.Blocks(title="🌍 Toxic Comment & AI Detector") as app:
|
60 |
gr.Markdown("## 🌍 Toxic Comment & AI Detector")
|
61 |
+
gr.Markdown("Detects multilingual toxicity and whether a comment is AI-generated. Paste comments or upload a CSV.")
|
62 |
|
63 |
with gr.Row():
|
64 |
+
text_input = gr.Textbox(lines=8, label="💬 Paste Comments (one per line)")
|
65 |
+
csv_input = gr.File(label="📥 Upload CSV (must have 'comment' column)")
|
66 |
|
67 |
+
submit_button = gr.Button("🔍 Analyze Comments")
|
68 |
+
output_table = gr.Dataframe(label="📊 Prediction Results")
|
69 |
+
download_button = gr.File(label="📤 Download CSV")
|
70 |
|
71 |
+
submit_button.click(fn=run_classification, inputs=[text_input, csv_input], outputs=[output_table, download_button])
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
app.launch()
|