Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,71 @@
|
|
1 |
import gradio as gr
|
2 |
-
from detoxify import Detoxify
|
3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Load model
|
6 |
-
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
9 |
TOXICITY_THRESHOLD = 0.7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
df.columns = [col.replace("_", " ") for col in df.columns]
|
24 |
|
25 |
-
# Add
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
)
|
41 |
|
42 |
if __name__ == "__main__":
|
43 |
-
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
+
from detoxify import Detoxify
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import io
|
8 |
|
9 |
+
# Load Detoxify multilingual model
|
10 |
+
tox_model = Detoxify('multilingual')
|
11 |
|
12 |
+
# Load AI detector model
|
13 |
+
ai_tokenizer = AutoTokenizer.from_pretrained("openai-community/roberta-base-openai-detector")
|
14 |
+
ai_model = AutoModelForSequenceClassification.from_pretrained("openai-community/roberta-base-openai-detector")
|
15 |
+
|
16 |
+
# Thresholds
|
17 |
TOXICITY_THRESHOLD = 0.7
|
18 |
+
AI_THRESHOLD = 0.5 # If >0.5, it's likely AI-generated
|
19 |
+
|
20 |
+
def detect_ai_generated(text):
|
21 |
+
with torch.no_grad():
|
22 |
+
inputs = ai_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
23 |
+
logits = ai_model(**inputs).logits
|
24 |
+
probs = torch.sigmoid(logits).squeeze().item()
|
25 |
+
return round(probs, 4)
|
26 |
|
27 |
+
def process_input(file):
|
28 |
+
df = pd.read_csv(file.name)
|
29 |
+
if 'comment' not in df.columns:
|
30 |
+
return "CSV must contain a 'comment' column."
|
31 |
+
|
32 |
+
comments = df['comment'].astype(str).tolist()
|
33 |
+
tox_results = tox_model.predict(comments)
|
34 |
+
tox_df = pd.DataFrame(tox_results, index=comments).round(4)
|
35 |
|
36 |
+
# Format columns
|
37 |
+
tox_df.columns = [col.replace("_", " ").title().replace(" ", "_") for col in tox_df.columns]
|
38 |
+
tox_df.columns = [col.replace("_", " ") for col in tox_df.columns]
|
39 |
|
40 |
+
# Add warnings
|
41 |
+
tox_df["⚠️ Warning"] = tox_df.apply(lambda row: "⚠️ High Risk" if any(score > TOXICITY_THRESHOLD for score in row) else "✅ Safe", axis=1)
|
|
|
42 |
|
43 |
+
# Add AI detection
|
44 |
+
tox_df["🧪 AI Probability"] = [detect_ai_generated(c) for c in tox_df.index]
|
45 |
+
tox_df["🧪 AI Detection"] = tox_df["🧪 AI Probability"].apply(lambda x: "🤖 Likely AI" if x > AI_THRESHOLD else "🧍 Human")
|
46 |
|
47 |
+
# Store downloadable CSV
|
48 |
+
csv_data = tox_df.copy()
|
49 |
+
csv_data.insert(0, "Comment", tox_df.index)
|
50 |
+
csv_bytes = csv_data.to_csv(index=False).encode()
|
51 |
+
return tox_df, ("toxicity_report.csv", csv_bytes)
|
52 |
|
53 |
+
# Gradio UI
|
54 |
+
upload = gr.File(label="📥 Upload .CSV (Must contain 'comment' column)")
|
55 |
+
output_table = gr.Dataframe(label="📊 Predictions (Multilingual + AI Detection)")
|
56 |
+
download = gr.File(label="📤 Download Predictions")
|
57 |
|
58 |
+
app = gr.Interface(
|
59 |
+
fn=process_input,
|
60 |
+
inputs=upload,
|
61 |
+
outputs=[output_table, download],
|
62 |
+
title="🌍 Toxic Comment Classifier + AI Text Detector",
|
63 |
+
description="""
|
64 |
+
📥 Upload a .csv file with a 'comment' column.
|
65 |
+
🔍 Each comment will be scored for toxicity (Multilingual model) and AI-generation probability (RoBERTa-based).
|
66 |
+
📤 Download the full report as .csv.
|
67 |
+
"""
|
68 |
)
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
+
app.launch()
|