Spaces:
Sleeping
Sleeping
KawshikManikantan
commited on
Commit
•
98e2ea5
1
Parent(s):
9da50ee
upload_trial
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- .gitignore +14 -0
- __init__.py +0 -0
- app.py +119 -0
- conf/config.yaml +37 -0
- conf/datasets/aft.yaml +5 -0
- conf/datasets/aft_increase.yaml +5 -0
- conf/datasets/aft_ind.yaml +5 -0
- conf/datasets/all.yaml +11 -0
- conf/datasets/animal.yaml +5 -0
- conf/datasets/avengers.yaml +5 -0
- conf/datasets/fantasy.yaml +7 -0
- conf/datasets/joint_lf.yaml +3 -0
- conf/datasets/litbank.yaml +8 -0
- conf/datasets/movie.yaml +5 -0
- conf/datasets/movie_cased.yaml +5 -0
- conf/datasets/ontonotes.yaml +12 -0
- conf/datasets/preco.yaml +6 -0
- conf/experiment/eval_all.yaml +13 -0
- conf/experiment/lf_coref_id.yaml +26 -0
- conf/experiment/lf_eval.yaml +23 -0
- conf/experiment/lf_extment.yaml +31 -0
- conf/experiment/lf_hybrid.yaml +25 -0
- conf/experiment/lf_static.yaml +25 -0
- conf/experiment/litbank.yaml +21 -0
- conf/experiment/onto_pseudo_hybrid.yaml +29 -0
- conf/experiment/onto_pseudo_static.yaml +29 -0
- conf/experiment/ontonotes.yaml +17 -0
- conf/experiment/ontonotes_pseudo.yaml +27 -0
- conf/infra/local.yaml +8 -0
- conf/infra/slurm.yaml +10 -0
- conf/model/doc_encoder/transformer/longformer_large.yaml +5 -0
- conf/model/doc_encoder/transformer_encoder.yaml +10 -0
- conf/model/memory/mem_type/unbounded.yaml +3 -0
- conf/model/memory/memory.yaml +15 -0
- conf/model/model.yaml +24 -0
- conf/optimizer/adam.yaml +4 -0
- conf/trainer/train.yaml +13 -0
- configs.py +4 -0
- coref_utils/__init__.py +0 -0
- coref_utils/conll.py +126 -0
- coref_utils/metrics.py +198 -0
- coref_utils/utils.py +43 -0
- data_utils/__init__.py +0 -0
- data_utils/tensorize_dataset.py +76 -0
- data_utils/utils.py +95 -0
- error_analysis/__init__.py +0 -0
- error_analysis/missing_clusters.py +99 -0
- error_analysis/singleton_analysis.py +120 -0
- experiment.py +1052 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/met_joint_f78b0fa9c1d7718b9ed703ddcf621ec9_lf_sd_train_gen_4/ filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models/
|
2 |
+
models_orig/
|
3 |
+
baseline_src/wandb
|
4 |
+
data/raw_data
|
5 |
+
**/wandb/
|
6 |
+
**/trash/
|
7 |
+
**/.env
|
8 |
+
**/__pycache__/
|
9 |
+
**/.hydra/
|
10 |
+
**/*result*.jsonl
|
11 |
+
**/*nohup.out**
|
12 |
+
**/extras/
|
13 |
+
models_7_6_24/**
|
14 |
+
results_old/**
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import spacy
|
3 |
+
import json
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from spacy.tokens import Doc, Span
|
7 |
+
from spacy import displacy
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from matplotlib.colors import to_hex
|
10 |
+
|
11 |
+
from inference.model_inference import Inference
|
12 |
+
from configs import *
|
13 |
+
|
14 |
+
|
15 |
+
def get_MEIRa_clusters(doc_name, text, model_type):
|
16 |
+
model_str = MODELS[model_type]
|
17 |
+
model = Inference(model_str)
|
18 |
+
|
19 |
+
output_dict = model.perform_coreference(text, doc_name)
|
20 |
+
return output_dict
|
21 |
+
|
22 |
+
|
23 |
+
def coref_visualizer(doc_name, text, model_type):
|
24 |
+
coref_output = get_MEIRa_clusters(doc_name, text, model_type)
|
25 |
+
|
26 |
+
tokens = coref_output["tokenized_doc"]
|
27 |
+
clusters = coref_output["clusters"]
|
28 |
+
labels = coref_output["representative_names"]
|
29 |
+
|
30 |
+
## Get a pastel palette
|
31 |
+
color_palette = {
|
32 |
+
label: to_hex(plt.cm.get_cmap("tab20", len(labels))(i))
|
33 |
+
for i, label in enumerate(labels)
|
34 |
+
}
|
35 |
+
|
36 |
+
nlp = spacy.blank("en")
|
37 |
+
doc = Doc(nlp.vocab, words=tokens)
|
38 |
+
|
39 |
+
print("Tokens:", tokens, flush=True)
|
40 |
+
# print("Doc:", doc, flush=True)
|
41 |
+
print(color_palette)
|
42 |
+
|
43 |
+
spans = []
|
44 |
+
for cluster_ind, cluster in enumerate(clusters[:-1]):
|
45 |
+
label = labels[cluster_ind]
|
46 |
+
for (start, end), mention in cluster:
|
47 |
+
span = Span(doc, start, end + 1, label=label)
|
48 |
+
spans.append(span)
|
49 |
+
|
50 |
+
doc.spans["coref_spans"] = spans
|
51 |
+
|
52 |
+
print("Rendering the visualization...")
|
53 |
+
|
54 |
+
# color_map = {label: color_palette[i] for i, label in enumerate(labels)}
|
55 |
+
# Generate the HTML output
|
56 |
+
html = displacy.render(
|
57 |
+
doc,
|
58 |
+
style="span",
|
59 |
+
options={
|
60 |
+
"spans_key": "coref_spans",
|
61 |
+
"colors": color_palette,
|
62 |
+
},
|
63 |
+
jupyter=False,
|
64 |
+
)
|
65 |
+
|
66 |
+
## Create a hash based on time and doc_name
|
67 |
+
time_hash = hash(str(time.time()) + doc_name)
|
68 |
+
html_file = f"gradio_outputs/output_{time_hash}.html"
|
69 |
+
json_file = f"gradio_outputs/output_{time_hash}.json"
|
70 |
+
|
71 |
+
with open(html_file, "w") as f:
|
72 |
+
f.write(html)
|
73 |
+
|
74 |
+
with open(json_file, "w") as f:
|
75 |
+
json.dump(coref_output, f)
|
76 |
+
|
77 |
+
return (
|
78 |
+
html_file,
|
79 |
+
json_file,
|
80 |
+
gr.DownloadButton(value=html_file, visible=True),
|
81 |
+
gr.DownloadButton(value=json_file, visible=True),
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
def download_html():
|
86 |
+
return gr.DownloadButton(visible=False)
|
87 |
+
|
88 |
+
|
89 |
+
def download_json():
|
90 |
+
return gr.DownloadButton(visible=False)
|
91 |
+
|
92 |
+
|
93 |
+
options = ["static", "hybrid"]
|
94 |
+
|
95 |
+
with gr.Blocks() as demo:
|
96 |
+
html_file = gr.File(visible=False)
|
97 |
+
json_file = gr.File(visible=False)
|
98 |
+
html_button = gr.DownloadButton("Download HTML", visible=False)
|
99 |
+
json_button = gr.DownloadButton("Download JSON", visible=False)
|
100 |
+
|
101 |
+
html_button.click()
|
102 |
+
json_button.click()
|
103 |
+
iface = gr.Interface(
|
104 |
+
fn=coref_visualizer,
|
105 |
+
inputs=[
|
106 |
+
gr.Textbox(lines=1, placeholder="Enter document name:"),
|
107 |
+
gr.Textbox(lines=100, placeholder="Enter text for coreference resolution:"),
|
108 |
+
gr.Radio(choices=options, label="Select an Option"),
|
109 |
+
],
|
110 |
+
outputs=[
|
111 |
+
html_file,
|
112 |
+
json_file,
|
113 |
+
html_button,
|
114 |
+
json_button,
|
115 |
+
],
|
116 |
+
title="Coreference Resolution Visualizer",
|
117 |
+
)
|
118 |
+
|
119 |
+
demo.launch(debug=True)
|
conf/config.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
metrics: ['MUC', 'Bcub', 'CEAFE']
|
2 |
+
keep_singletons: True
|
3 |
+
seed: 45
|
4 |
+
train: True
|
5 |
+
use_wandb: True
|
6 |
+
desc: "Major Entity Tracking"
|
7 |
+
override_encoder: False
|
8 |
+
log_vals: False
|
9 |
+
# Useful for testing models with different memory architecture than the one trained on
|
10 |
+
override_memory: False
|
11 |
+
log_dir_add: ""
|
12 |
+
device: "cuda:0"
|
13 |
+
key: ""
|
14 |
+
|
15 |
+
defaults:
|
16 |
+
- _self_
|
17 |
+
- datasets: litbank
|
18 |
+
- model: model
|
19 |
+
- optimizer: adam
|
20 |
+
- trainer: train
|
21 |
+
- infra: local
|
22 |
+
- experiment: debug
|
23 |
+
|
24 |
+
paths:
|
25 |
+
resource_dir: "../data/"
|
26 |
+
base_data_dir: ${paths.resource_dir}/raw_data
|
27 |
+
conll_scorer: ${paths.resource_dir}/reference-coreference-scorers/scorer.pl
|
28 |
+
base_model_dir: ${infra.work_dir}/../models ## remove /../
|
29 |
+
model_dir: null
|
30 |
+
best_model_dir: null
|
31 |
+
model_filename: 'model.pth'
|
32 |
+
model_name: null
|
33 |
+
model_name_prefix: 'met_'
|
34 |
+
model_path: null
|
35 |
+
best_model_path: null
|
36 |
+
doc_encoder_dirname: 'doc_encoder'
|
37 |
+
|
conf/datasets/aft.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aft:
|
2 |
+
name: "aft"
|
3 |
+
targeted_eval: False
|
4 |
+
num_test_docs: 3
|
5 |
+
has_conll: True
|
conf/datasets/aft_increase.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aft_increase:
|
2 |
+
name: "aft_increase"
|
3 |
+
targeted_eval: False
|
4 |
+
num_test_docs: 23
|
5 |
+
has_conll: False
|
conf/datasets/aft_ind.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aft_ind:
|
2 |
+
name: "aft_ind"
|
3 |
+
targeted_eval: False
|
4 |
+
num_test_docs: 23
|
5 |
+
has_conll: False
|
conf/datasets/all.yaml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- litbank
|
3 |
+
- fantasy
|
4 |
+
- aft
|
5 |
+
- aft_increase
|
6 |
+
- aft_ind
|
7 |
+
- animal
|
8 |
+
- pride
|
9 |
+
- movie
|
10 |
+
- movie_cased
|
11 |
+
- avengers
|
conf/datasets/animal.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
animal:
|
2 |
+
name: "animal"
|
3 |
+
targeted_eval: False
|
4 |
+
num_test_docs: 3
|
5 |
+
has_conll: True
|
conf/datasets/avengers.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
avengers:
|
2 |
+
name: "avengers"
|
3 |
+
targeted_eval: False
|
4 |
+
num_test_docs: 1
|
5 |
+
has_conll: True
|
conf/datasets/fantasy.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fantasy:
|
2 |
+
name: "fantasy"
|
3 |
+
targeted_eval: False
|
4 |
+
num_train_docs: 171
|
5 |
+
num_dev_docs: 20
|
6 |
+
num_test_docs: 20
|
7 |
+
has_conll: True
|
conf/datasets/joint_lf.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- litbank
|
3 |
+
- fantasy
|
conf/datasets/litbank.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
litbank:
|
2 |
+
name: "LitBank"
|
3 |
+
cross_val_split: 0
|
4 |
+
targeted_eval: False
|
5 |
+
num_train_docs: 80
|
6 |
+
num_dev_docs: 10
|
7 |
+
num_test_docs: 10
|
8 |
+
has_conll: True
|
conf/datasets/movie.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
movie:
|
2 |
+
name: "movie"
|
3 |
+
targeted_eval: False
|
4 |
+
num_test_docs: 6
|
5 |
+
has_conll: False
|
conf/datasets/movie_cased.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
movie_cased:
|
2 |
+
name: "movie_cased"
|
3 |
+
targeted_eval: False
|
4 |
+
num_test_docs: 6
|
5 |
+
has_conll: False
|
conf/datasets/ontonotes.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ontonotes:
|
2 |
+
name: "OntoNotes"
|
3 |
+
targeted_eval: False
|
4 |
+
num_train_docs: 2802
|
5 |
+
num_dev_docs: 343
|
6 |
+
num_test_docs: 348
|
7 |
+
has_conll: True
|
8 |
+
# OntoNotes specific attributes
|
9 |
+
# use_genre_feature: False # Whether to use document genre as a feature or not
|
10 |
+
# default_genre: "nw"
|
11 |
+
# genres: [ "bc", "bn", "mz", "nw", "pt", "tc", "wb" ]
|
12 |
+
singleton_file: null # File path with pseudo-singletons
|
conf/datasets/preco.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
preco:
|
2 |
+
name: "PreCo"
|
3 |
+
targeted_eval: False
|
4 |
+
num_train_docs: 3000
|
5 |
+
num_dev_docs: 500
|
6 |
+
num_test_docs: 500
|
conf/experiment/eval_all.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Evaluate all models
|
4 |
+
|
5 |
+
|
6 |
+
defaults:
|
7 |
+
- override /datasets: all
|
8 |
+
|
9 |
+
model:
|
10 |
+
doc_encoder:
|
11 |
+
add_speaker_tokens: True
|
12 |
+
|
13 |
+
train: False
|
conf/experiment/lf_coref_id.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# This configuration trains a joint model for Ontonotes, Litbank, and Preco.
|
4 |
+
# Note that OntoNotes and Preco are downsampled in this configuration.
|
5 |
+
|
6 |
+
# Model name in CRAC 2021: longdoc^S Joint
|
7 |
+
|
8 |
+
|
9 |
+
defaults:
|
10 |
+
- override /datasets: joint_lf
|
11 |
+
- override /trainer: train.yaml
|
12 |
+
- override /model: model.yaml
|
13 |
+
|
14 |
+
trainer:
|
15 |
+
log_frequency: 500
|
16 |
+
max_evals: 20
|
17 |
+
eval_per_k_steps: null
|
18 |
+
patience: 10
|
19 |
+
|
20 |
+
model:
|
21 |
+
doc_encoder:
|
22 |
+
add_speaker_tokens: True
|
23 |
+
memory:
|
24 |
+
pseudo_dist: False
|
25 |
+
|
26 |
+
log_dir_add: "coref_id"
|
conf/experiment/lf_eval.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# This configuration trains a joint model for Ontonotes, Litbank, and Preco.
|
4 |
+
# Note that OntoNotes and Preco are downsampled in this configuration.
|
5 |
+
|
6 |
+
# Model name in CRAC 2021: longdoc^S Joint
|
7 |
+
|
8 |
+
|
9 |
+
defaults:
|
10 |
+
- override /datasets: joint_lf
|
11 |
+
- override /trainer: train.yaml
|
12 |
+
- override /model: model.yaml
|
13 |
+
|
14 |
+
trainer:
|
15 |
+
log_frequency: 500
|
16 |
+
max_evals: 25
|
17 |
+
eval_per_k_steps: null
|
18 |
+
patience: 10
|
19 |
+
|
20 |
+
model:
|
21 |
+
doc_encoder:
|
22 |
+
add_speaker_tokens: True
|
23 |
+
|
conf/experiment/lf_extment.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# This configuration trains a joint model for Ontonotes, Litbank, and Preco.
|
4 |
+
# Note that OntoNotes and Preco are downsampled in this configuration.
|
5 |
+
|
6 |
+
# Model name in CRAC 2021: longdoc^S Joint
|
7 |
+
|
8 |
+
|
9 |
+
defaults:
|
10 |
+
- override /datasets: joint_lf
|
11 |
+
- override /trainer: train.yaml
|
12 |
+
- override /model: model.yaml
|
13 |
+
|
14 |
+
trainer:
|
15 |
+
log_frequency: 500
|
16 |
+
max_evals: 20
|
17 |
+
eval_per_k_steps: null
|
18 |
+
patience: 10
|
19 |
+
|
20 |
+
datasets:
|
21 |
+
litbank:
|
22 |
+
external_md_file: "litbank/longformer_speaker/0/mentions_ment_model_litbank_eval.jsonl"
|
23 |
+
fantasy:
|
24 |
+
external_md_file: "fantasy/longformer_speaker/mentions_ment_model_fantasy_eval.jsonl"
|
25 |
+
|
26 |
+
model:
|
27 |
+
doc_encoder:
|
28 |
+
add_speaker_tokens: True
|
29 |
+
mention_params:
|
30 |
+
ext_ment: True
|
31 |
+
|
conf/experiment/lf_hybrid.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# This configuration trains a joint model for Ontonotes, Litbank, and Preco.
|
4 |
+
# Note that OntoNotes and Preco are downsampled in this configuration.
|
5 |
+
|
6 |
+
# Model name in CRAC 2021: longdoc^S Joint
|
7 |
+
|
8 |
+
|
9 |
+
defaults:
|
10 |
+
- override /datasets: joint_lf
|
11 |
+
- override /trainer: train.yaml
|
12 |
+
- override /model: model.yaml
|
13 |
+
|
14 |
+
trainer:
|
15 |
+
log_frequency: 500
|
16 |
+
max_evals: 25
|
17 |
+
eval_per_k_steps: null
|
18 |
+
patience: 10
|
19 |
+
|
20 |
+
model:
|
21 |
+
doc_encoder:
|
22 |
+
add_speaker_tokens: True
|
23 |
+
memory:
|
24 |
+
type: hybrid
|
25 |
+
|
conf/experiment/lf_static.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# This configuration trains a joint model for Ontonotes, Litbank, and Preco.
|
4 |
+
# Note that OntoNotes and Preco are downsampled in this configuration.
|
5 |
+
# OntoNotes also uses pseudo-singletons
|
6 |
+
|
7 |
+
# Model name in CRAC 2021: longdoc^S Joint + PS 30K
|
8 |
+
|
9 |
+
|
10 |
+
defaults:
|
11 |
+
- override /datasets: joint_lf
|
12 |
+
- override /trainer: train.yaml
|
13 |
+
- override /model: model.yaml
|
14 |
+
|
15 |
+
trainer:
|
16 |
+
log_frequency: 500
|
17 |
+
max_evals: 25
|
18 |
+
eval_per_k_steps: null
|
19 |
+
patience: 10
|
20 |
+
|
21 |
+
model:
|
22 |
+
doc_encoder:
|
23 |
+
add_speaker_tokens: True
|
24 |
+
memory:
|
25 |
+
type: "static"
|
conf/experiment/litbank.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Vanilla LitBank configuration
|
4 |
+
|
5 |
+
# Model name in CRAC 2021: longdoc LB_0
|
6 |
+
|
7 |
+
|
8 |
+
defaults:
|
9 |
+
- override /datasets: litbank
|
10 |
+
- override /trainer: train.yaml
|
11 |
+
|
12 |
+
trainer:
|
13 |
+
log_frequency: 10
|
14 |
+
max_evals: 40
|
15 |
+
patience: 20
|
16 |
+
eval_per_k_steps: null
|
17 |
+
|
18 |
+
model:
|
19 |
+
doc_encoder:
|
20 |
+
add_speaker_tokens: True
|
21 |
+
|
conf/experiment/onto_pseudo_hybrid.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# This configuration trains a joint model for Ontonotes, Litbank, and Preco.
|
4 |
+
# Note that OntoNotes and Preco are downsampled in this configuration.
|
5 |
+
|
6 |
+
# Model name in CRAC 2021: longdoc^S Joint
|
7 |
+
|
8 |
+
|
9 |
+
defaults:
|
10 |
+
- override /datasets: ontonotes
|
11 |
+
- override /trainer: train.yaml
|
12 |
+
- override /model: model.yaml
|
13 |
+
|
14 |
+
trainer:
|
15 |
+
log_frequency: 250
|
16 |
+
max_evals: 20
|
17 |
+
eval_per_k_steps: null
|
18 |
+
patience: 10
|
19 |
+
|
20 |
+
model:
|
21 |
+
doc_encoder:
|
22 |
+
add_speaker_tokens: True
|
23 |
+
memory:
|
24 |
+
type: hybrid
|
25 |
+
|
26 |
+
datasets:
|
27 |
+
ontonotes:
|
28 |
+
singleton_file: ontonotes/ment_singletons_longformer_speaker/30.jsonlines
|
29 |
+
|
conf/experiment/onto_pseudo_static.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# This configuration trains a joint model for Ontonotes, Litbank, and Preco.
|
4 |
+
# Note that OntoNotes and Preco are downsampled in this configuration.
|
5 |
+
# OntoNotes also uses pseudo-singletons
|
6 |
+
|
7 |
+
# Model name in CRAC 2021: longdoc^S Joint + PS 30K
|
8 |
+
|
9 |
+
|
10 |
+
defaults:
|
11 |
+
- override /datasets: ontonotes
|
12 |
+
- override /trainer: train.yaml
|
13 |
+
- override /model: model.yaml
|
14 |
+
|
15 |
+
trainer:
|
16 |
+
log_frequency: 500
|
17 |
+
max_evals: 20
|
18 |
+
eval_per_k_steps: null
|
19 |
+
patience: 10
|
20 |
+
|
21 |
+
model:
|
22 |
+
doc_encoder:
|
23 |
+
add_speaker_tokens: True
|
24 |
+
memory:
|
25 |
+
type: "static"
|
26 |
+
|
27 |
+
datasets:
|
28 |
+
ontonotes:
|
29 |
+
singleton_file: ontonotes/ment_singletons_longformer_speaker/30.jsonlines
|
conf/experiment/ontonotes.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Vanilla ontonotes configuration which doesn't assume any upstream features
|
4 |
+
# of speaker and document genre
|
5 |
+
|
6 |
+
# Model name in CRAC 2021: longdoc ON
|
7 |
+
|
8 |
+
defaults:
|
9 |
+
- override /datasets: ontonotes
|
10 |
+
- override /trainer: train.yaml
|
11 |
+
|
12 |
+
trainer:
|
13 |
+
log_frequency: 250
|
14 |
+
patience: 10
|
15 |
+
eval_per_k_steps: 5000
|
16 |
+
|
17 |
+
|
conf/experiment/ontonotes_pseudo.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# This configuration trains ontonotes using the speaker information and pseudo singletons.
|
4 |
+
# This is the best OntoNotes configuration in our CRAC 2021 work.
|
5 |
+
# Note that this configuration doesn't assume other upstream features such as document genre
|
6 |
+
|
7 |
+
# Model name in CRAC 2021: longdoc^S ON + PS 60K
|
8 |
+
|
9 |
+
|
10 |
+
defaults:
|
11 |
+
- override /datasets: ontonotes
|
12 |
+
- override /trainer: train.yaml
|
13 |
+
- override /model: model.yaml
|
14 |
+
|
15 |
+
trainer:
|
16 |
+
log_frequency: 250
|
17 |
+
max_evals: 20
|
18 |
+
patience: 10
|
19 |
+
eval_per_k_steps: null
|
20 |
+
|
21 |
+
model:
|
22 |
+
doc_encoder:
|
23 |
+
add_speaker_tokens: True
|
24 |
+
|
25 |
+
datasets:
|
26 |
+
ontonotes:
|
27 |
+
singleton_file: ontonotes/ment_singletons_longformer_speaker/30.jsonlines
|
conf/infra/local.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_local: True
|
2 |
+
work_dir: "./"
|
3 |
+
|
4 |
+
|
5 |
+
#hydra:
|
6 |
+
# run:
|
7 |
+
# dir:
|
8 |
+
# "~/Research/fast-coref/models"
|
conf/infra/slurm.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
is_local: False
|
2 |
+
job_time: 14280
|
3 |
+
job_id: null
|
4 |
+
work_dir: "./"
|
5 |
+
|
6 |
+
|
7 |
+
#hydra:
|
8 |
+
# run:
|
9 |
+
# dir:
|
10 |
+
# /share/data/speech/shtoshni/research/fast-coref/slurm_scripts/thesis/${job_id}.log
|
conf/model/doc_encoder/transformer/longformer_large.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: 'longformer'
|
2 |
+
model_size: 'large'
|
3 |
+
model_str: 'allenai/longformer-large-4096'
|
4 |
+
max_encoder_segment_len: 4096
|
5 |
+
max_segment_len: 4096
|
conf/model/doc_encoder/transformer_encoder.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- transformer: longformer_large
|
3 |
+
|
4 |
+
chunking: independent
|
5 |
+
finetune: true # Add logic of finetuning depending on the training logic
|
6 |
+
add_speaker_tokens: true # Change this value depending on the dataset
|
7 |
+
speaker_start: '[SPEAKER_START]'
|
8 |
+
speaker_end: '[SPEAKER_END]'
|
9 |
+
|
10 |
+
|
conf/model/memory/mem_type/unbounded.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
name: unbounded
|
2 |
+
max_ents: null
|
3 |
+
eval_max_ents: null
|
conf/model/memory/memory.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- mem_type: unbounded
|
3 |
+
|
4 |
+
emb_size: 20
|
5 |
+
mlp_size: 3000
|
6 |
+
mlp_depth: 1
|
7 |
+
sim_func: hadamard
|
8 |
+
entity_rep: wt_avg
|
9 |
+
num_feats: 2 ## Change this to remove position information.
|
10 |
+
thresh: 0.0
|
11 |
+
rep_pos: "learned"
|
12 |
+
pseudo_dist: True
|
13 |
+
num_embeds: 10
|
14 |
+
type: "dyn"
|
15 |
+
batch_size: 64
|
conf/model/model.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- doc_encoder: transformer_encoder
|
3 |
+
- memory: memory
|
4 |
+
|
5 |
+
mention_params:
|
6 |
+
max_span_width: 20
|
7 |
+
ment_emb: attn
|
8 |
+
use_gold_ments: false
|
9 |
+
ext_ment: false
|
10 |
+
use_topk: false
|
11 |
+
top_span_ratio: 0.4
|
12 |
+
emb_size: 20
|
13 |
+
mlp_size: 3000
|
14 |
+
mlp_depth: 1
|
15 |
+
ment_emb_to_size_factor:
|
16 |
+
attn: 3
|
17 |
+
endpoint: 2
|
18 |
+
max: 1
|
19 |
+
ignore_non_gold: True
|
20 |
+
|
21 |
+
metadata_params:
|
22 |
+
use_genre_feature: False
|
23 |
+
default_genre: "nw"
|
24 |
+
genres: [ "bc", "bn", "mz", "nw", "pt", "tc", "wb" ]
|
conf/optimizer/adam.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
init_lr: 3e-4
|
2 |
+
fine_tune_lr: 1e-5
|
3 |
+
max_gradient_norm: 1.0
|
4 |
+
lr_decay: linear
|
conf/trainer/train.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dropout_rate: 0.3
|
2 |
+
label_smoothing_wt: 0.1
|
3 |
+
ment_loss_mode: 'all'
|
4 |
+
normalize_loss: False
|
5 |
+
ment_loss_incl: True
|
6 |
+
max_evals: 20
|
7 |
+
to_save_model: False
|
8 |
+
log_frequency: 500
|
9 |
+
patience: 10
|
10 |
+
eval_per_k_steps: null
|
11 |
+
num_training_steps: null
|
12 |
+
max_training_segments: 1
|
13 |
+
generalise: True
|
configs.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODELS = {
|
2 |
+
"static": "models/met_joint_efbc65248a6aedce066a04a9f4f40084_lf_s_train_gen_5",
|
3 |
+
"hybrid": "models/met_joint_f78b0fa9c1d7718b9ed703ddcf621ec9_lf_sd_train_gen_4",
|
4 |
+
}
|
coref_utils/__init__.py
ADDED
File without changes
|
coref_utils/conll.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import subprocess
|
3 |
+
import operator
|
4 |
+
import collections
|
5 |
+
|
6 |
+
BEGIN_DOCUMENT_REGEX = re.compile(r"#begin document \((.*)\); part (\d+)")
|
7 |
+
COREF_RESULTS_REGEX = re.compile(
|
8 |
+
r".*Coreference: Recall: \([0-9.]+ / [0-9.]+\) ([0-9.]+)%\tPrecision: \([0-9.]+ / [0-9.]+\) "
|
9 |
+
r"([0-9.]+)%\tF1: ([0-9.]+)%.*",
|
10 |
+
re.DOTALL,
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
def get_doc_key(doc_id, part):
|
15 |
+
return "{}_{}".format(doc_id, int(part))
|
16 |
+
|
17 |
+
|
18 |
+
def output_conll(input_file, output_file, predictions, subtoken_map):
|
19 |
+
prediction_map = {}
|
20 |
+
for doc_key, clusters in predictions.items():
|
21 |
+
start_map = collections.defaultdict(list)
|
22 |
+
end_map = collections.defaultdict(list)
|
23 |
+
word_map = collections.defaultdict(list)
|
24 |
+
for cluster_id, mentions in enumerate(clusters):
|
25 |
+
for start, end in mentions:
|
26 |
+
start, end = subtoken_map[doc_key][start], subtoken_map[doc_key][end]
|
27 |
+
if start == end:
|
28 |
+
word_map[start].append(cluster_id)
|
29 |
+
else:
|
30 |
+
start_map[start].append((cluster_id, end))
|
31 |
+
end_map[end].append((cluster_id, start))
|
32 |
+
for k, v in start_map.items():
|
33 |
+
start_map[k] = [
|
34 |
+
cluster_id
|
35 |
+
for cluster_id, end in sorted(
|
36 |
+
v, key=operator.itemgetter(1), reverse=True
|
37 |
+
)
|
38 |
+
]
|
39 |
+
for k, v in end_map.items():
|
40 |
+
end_map[k] = [
|
41 |
+
cluster_id
|
42 |
+
for cluster_id, start in sorted(
|
43 |
+
v, key=operator.itemgetter(1), reverse=True
|
44 |
+
)
|
45 |
+
]
|
46 |
+
prediction_map[doc_key] = (start_map, end_map, word_map)
|
47 |
+
|
48 |
+
word_index = 0
|
49 |
+
for line in input_file.readlines():
|
50 |
+
row = line.split()
|
51 |
+
if len(row) == 0:
|
52 |
+
output_file.write("\n")
|
53 |
+
elif row[0].startswith("#"):
|
54 |
+
begin_match = re.match(BEGIN_DOCUMENT_REGEX, line)
|
55 |
+
if begin_match:
|
56 |
+
doc_key = get_doc_key(begin_match.group(1), begin_match.group(2))
|
57 |
+
start_map, end_map, word_map = prediction_map[doc_key]
|
58 |
+
word_index = 0
|
59 |
+
output_file.write(line)
|
60 |
+
# output_file.write("\n")
|
61 |
+
else:
|
62 |
+
assert get_doc_key(row[0], row[1]) == doc_key
|
63 |
+
coref_list = []
|
64 |
+
if word_index in end_map:
|
65 |
+
for cluster_id in end_map[word_index]:
|
66 |
+
coref_list.append("{})".format(cluster_id))
|
67 |
+
if word_index in word_map:
|
68 |
+
for cluster_id in word_map[word_index]:
|
69 |
+
coref_list.append("({})".format(cluster_id))
|
70 |
+
if word_index in start_map:
|
71 |
+
for cluster_id in start_map[word_index]:
|
72 |
+
coref_list.append("({}".format(cluster_id))
|
73 |
+
|
74 |
+
if len(coref_list) == 0:
|
75 |
+
row[-1] = "-"
|
76 |
+
else:
|
77 |
+
row[-1] = "|".join(coref_list)
|
78 |
+
|
79 |
+
output_file.write(" ".join(row))
|
80 |
+
output_file.write("\n")
|
81 |
+
word_index += 1
|
82 |
+
|
83 |
+
|
84 |
+
def official_conll_eval(
|
85 |
+
conll_scorer, gold_path, predicted_path, metric, official_stdout=False
|
86 |
+
):
|
87 |
+
cmd = [conll_scorer, metric, gold_path, predicted_path, "none"]
|
88 |
+
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
|
89 |
+
stdout, stderr = process.communicate()
|
90 |
+
process.wait()
|
91 |
+
|
92 |
+
stdout = stdout.decode("utf-8")
|
93 |
+
if stderr is not None:
|
94 |
+
print(stderr)
|
95 |
+
|
96 |
+
if official_stdout:
|
97 |
+
print("Official result for {}".format(metric))
|
98 |
+
print(stdout)
|
99 |
+
|
100 |
+
coref_results_match = re.match(COREF_RESULTS_REGEX, stdout)
|
101 |
+
recall = float(coref_results_match.group(1))
|
102 |
+
precision = float(coref_results_match.group(2))
|
103 |
+
f1 = float(coref_results_match.group(3))
|
104 |
+
return {"r": recall, "p": precision, "f": f1}
|
105 |
+
|
106 |
+
|
107 |
+
def evaluate_conll(
|
108 |
+
conll_scorer,
|
109 |
+
gold_path,
|
110 |
+
predictions,
|
111 |
+
subtoken_maps,
|
112 |
+
prediction_path,
|
113 |
+
all_metrics=False,
|
114 |
+
official_stdout=False,
|
115 |
+
):
|
116 |
+
with open(prediction_path, "w") as prediction_file:
|
117 |
+
with open(gold_path, "r") as gold_file:
|
118 |
+
output_conll(gold_file, prediction_file, predictions, subtoken_maps)
|
119 |
+
|
120 |
+
result = {
|
121 |
+
metric: official_conll_eval(
|
122 |
+
conll_scorer, gold_file.name, prediction_file.name, metric, official_stdout
|
123 |
+
)
|
124 |
+
for metric in ("muc", "bcub", "ceafe")
|
125 |
+
}
|
126 |
+
return result
|
coref_utils/metrics.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from collections import Counter
|
3 |
+
from scipy.optimize import linear_sum_assignment
|
4 |
+
|
5 |
+
|
6 |
+
def f1(p_num, p_den, r_num, r_den, beta=1):
|
7 |
+
p = 0 if p_den == 0 else p_num / float(p_den)
|
8 |
+
r = 0 if r_den == 0 else r_num / float(r_den)
|
9 |
+
return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r)
|
10 |
+
|
11 |
+
|
12 |
+
class CorefEvaluator(object):
|
13 |
+
def __init__(self):
|
14 |
+
self.evaluators = [Evaluator(m) for m in (muc, b_cubed, ceafe)]
|
15 |
+
|
16 |
+
def update(self, predicted, gold, mention_to_predicted, mention_to_gold):
|
17 |
+
for e in self.evaluators:
|
18 |
+
e.update(predicted, gold, mention_to_predicted, mention_to_gold)
|
19 |
+
|
20 |
+
def get_f1(self):
|
21 |
+
return sum(e.get_f1() for e in self.evaluators) / len(self.evaluators)
|
22 |
+
|
23 |
+
def get_recall(self):
|
24 |
+
return sum(e.get_recall() for e in self.evaluators) / len(self.evaluators)
|
25 |
+
|
26 |
+
def get_precision(self):
|
27 |
+
return sum(e.get_precision() for e in self.evaluators) / len(self.evaluators)
|
28 |
+
|
29 |
+
def get_prf(self):
|
30 |
+
return self.get_precision(), self.get_recall(), self.get_f1()
|
31 |
+
|
32 |
+
|
33 |
+
class F1Evaluator(object):
|
34 |
+
def __init__(self):
|
35 |
+
self.f1_macro_sum = 0.0
|
36 |
+
self.f1_micro_sum = 0.0
|
37 |
+
self.macro_support = 0
|
38 |
+
self.micro_support = 0
|
39 |
+
|
40 |
+
def update(self, predicted, gold):
|
41 |
+
if gold:
|
42 |
+
for cluster_ind, cluster in enumerate(gold):
|
43 |
+
predicted_set = set(predicted[cluster_ind])
|
44 |
+
correct = set(cluster).intersection(set(predicted_set))
|
45 |
+
num_correct = len(correct)
|
46 |
+
num_predicted = len(predicted_set)
|
47 |
+
num_gt = len(cluster)
|
48 |
+
precision = num_correct / num_predicted if num_predicted > 0 else 0
|
49 |
+
recall = num_correct / num_gt if num_gt > 0 else 0
|
50 |
+
f1_score = (
|
51 |
+
2 * precision * recall / (precision + recall)
|
52 |
+
if precision + recall > 0
|
53 |
+
else 0
|
54 |
+
)
|
55 |
+
support_entity_micro = num_gt
|
56 |
+
support_entity_macro = 1
|
57 |
+
self.f1_macro_sum += f1_score * support_entity_macro
|
58 |
+
self.f1_micro_sum += f1_score * support_entity_micro
|
59 |
+
self.macro_support += support_entity_macro
|
60 |
+
self.micro_support += support_entity_micro
|
61 |
+
|
62 |
+
def get_numbers(self):
|
63 |
+
f1_macro = (
|
64 |
+
(self.f1_macro_sum / self.macro_support) * 100
|
65 |
+
if self.macro_support > 0
|
66 |
+
else 0
|
67 |
+
)
|
68 |
+
f1_micro = (
|
69 |
+
(self.f1_micro_sum / self.micro_support) * 100
|
70 |
+
if self.micro_support > 0
|
71 |
+
else 0
|
72 |
+
)
|
73 |
+
return f1_macro, f1_micro
|
74 |
+
|
75 |
+
|
76 |
+
class Evaluator(object):
|
77 |
+
def __init__(self, metric, beta=1):
|
78 |
+
self.p_num = 0
|
79 |
+
self.p_den = 0
|
80 |
+
self.r_num = 0
|
81 |
+
self.r_den = 0
|
82 |
+
self.metric = metric
|
83 |
+
self.beta = beta
|
84 |
+
|
85 |
+
def update(self, predicted, gold, mention_to_predicted, mention_to_gold):
|
86 |
+
if self.metric == ceafe:
|
87 |
+
pn, pd, rn, rd = self.metric(predicted, gold)
|
88 |
+
else:
|
89 |
+
pn, pd = self.metric(predicted, mention_to_gold)
|
90 |
+
rn, rd = self.metric(gold, mention_to_predicted)
|
91 |
+
self.p_num += pn
|
92 |
+
self.p_den += pd
|
93 |
+
self.r_num += rn
|
94 |
+
self.r_den += rd
|
95 |
+
|
96 |
+
def get_f1(self):
|
97 |
+
return f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta)
|
98 |
+
|
99 |
+
def get_recall(self):
|
100 |
+
return 0 if self.r_num == 0 else self.r_num / float(self.r_den)
|
101 |
+
|
102 |
+
def get_precision(self):
|
103 |
+
return 0 if self.p_num == 0 else self.p_num / float(self.p_den)
|
104 |
+
|
105 |
+
def get_prf(self):
|
106 |
+
return self.get_precision(), self.get_recall(), self.get_f1()
|
107 |
+
|
108 |
+
def get_counts(self):
|
109 |
+
return self.p_num, self.p_den, self.r_num, self.r_den
|
110 |
+
|
111 |
+
def get_prf_str(self):
|
112 |
+
perf_str = (
|
113 |
+
f"Recall: {self.get_recall() * 100}, Precision: {self.get_precision() * 100}, "
|
114 |
+
f"F-score: {self.get_f1() * 100}\n"
|
115 |
+
)
|
116 |
+
|
117 |
+
return perf_str
|
118 |
+
|
119 |
+
|
120 |
+
def evaluate_documents(documents, metric, beta=1):
|
121 |
+
evaluator = Evaluator(metric, beta=beta)
|
122 |
+
for document in documents:
|
123 |
+
evaluator.update(document)
|
124 |
+
return evaluator.get_precision(), evaluator.get_recall(), evaluator.get_f1()
|
125 |
+
|
126 |
+
|
127 |
+
def b_cubed(clusters, mention_to_gold):
|
128 |
+
num, dem = 0, 0
|
129 |
+
|
130 |
+
for c in clusters:
|
131 |
+
gold_counts = Counter()
|
132 |
+
correct = 0
|
133 |
+
for m in c:
|
134 |
+
if m in mention_to_gold:
|
135 |
+
gold_counts[tuple(mention_to_gold[m])] += 1
|
136 |
+
for c2, count in gold_counts.items():
|
137 |
+
correct += count * count
|
138 |
+
|
139 |
+
num += correct / float(len(c))
|
140 |
+
dem += len(c)
|
141 |
+
|
142 |
+
return num, dem
|
143 |
+
|
144 |
+
|
145 |
+
def muc(clusters, mention_to_gold):
|
146 |
+
tp, p = 0, 0
|
147 |
+
for c in clusters:
|
148 |
+
p += len(c) - 1
|
149 |
+
tp += len(c)
|
150 |
+
linked = set()
|
151 |
+
for m in c:
|
152 |
+
if m in mention_to_gold:
|
153 |
+
linked.add(mention_to_gold[m])
|
154 |
+
else:
|
155 |
+
tp -= 1
|
156 |
+
tp -= len(linked)
|
157 |
+
return tp, p
|
158 |
+
|
159 |
+
|
160 |
+
def phi4(c1, c2):
|
161 |
+
return 2 * len([m for m in c1 if m in c2]) / float(len(c1) + len(c2))
|
162 |
+
|
163 |
+
|
164 |
+
def ceafe(clusters, gold_clusters):
|
165 |
+
scores = np.zeros((len(gold_clusters), len(clusters)))
|
166 |
+
for i in range(len(gold_clusters)):
|
167 |
+
for j in range(len(clusters)):
|
168 |
+
scores[i, j] = phi4(gold_clusters[i], clusters[j])
|
169 |
+
matching = linear_sum_assignment(-scores)
|
170 |
+
matching = np.asarray(matching)
|
171 |
+
matching = np.transpose(matching)
|
172 |
+
|
173 |
+
similarity = sum(scores[matching[:, 0], matching[:, 1]])
|
174 |
+
return similarity, len(clusters), similarity, len(gold_clusters)
|
175 |
+
|
176 |
+
|
177 |
+
def lea(clusters, mention_to_gold):
|
178 |
+
num, dem = 0, 0
|
179 |
+
|
180 |
+
for c in clusters:
|
181 |
+
if len(c) == 1:
|
182 |
+
continue
|
183 |
+
|
184 |
+
common_links = 0
|
185 |
+
all_links = len(c) * (len(c) - 1) / 2.0
|
186 |
+
for i, m in enumerate(c):
|
187 |
+
if m in mention_to_gold:
|
188 |
+
for m2 in c[i + 1 :]:
|
189 |
+
if (
|
190 |
+
m2 in mention_to_gold
|
191 |
+
and mention_to_gold[m] == mention_to_gold[m2]
|
192 |
+
):
|
193 |
+
common_links += 1
|
194 |
+
|
195 |
+
num += len(c) * common_links / float(all_links)
|
196 |
+
dem += len(c)
|
197 |
+
|
198 |
+
return num, dem
|
coref_utils/utils.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Tuple
|
2 |
+
|
3 |
+
|
4 |
+
def filter_clusters(clusters: List, threshold: int = 1) -> List:
|
5 |
+
"""Filter clusters with mentions less than the specified threshold."""
|
6 |
+
|
7 |
+
return [
|
8 |
+
tuple(tuple(mention) for mention in cluster)
|
9 |
+
for cluster_ind,cluster in enumerate(clusters)
|
10 |
+
if len(cluster) >= threshold and cluster_ind != len(clusters) - 1 # last cluster is always removed.
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
def get_mention_to_cluster(clusters: List) -> Dict:
|
15 |
+
"""Get mention to cluster mapping."""
|
16 |
+
|
17 |
+
clusters = [tuple(tuple(mention) for mention in cluster) for cluster in clusters]
|
18 |
+
mention_to_cluster_dict = {}
|
19 |
+
for cluster in clusters:
|
20 |
+
for mention in cluster:
|
21 |
+
mention_to_cluster_dict[mention] = cluster
|
22 |
+
return mention_to_cluster_dict
|
23 |
+
|
24 |
+
|
25 |
+
def get_mention_to_cluster_idx(clusters: List) -> Dict:
|
26 |
+
"""Get mention to cluster idx mapping while filtering clustering."""
|
27 |
+
|
28 |
+
clusters = [tuple(tuple(mention) for mention in cluster) for cluster in clusters]
|
29 |
+
mention_to_cluster_dict = {}
|
30 |
+
for cluster_idx, cluster in enumerate(clusters):
|
31 |
+
for mention in cluster:
|
32 |
+
mention_to_cluster_dict[mention] = cluster_idx
|
33 |
+
return mention_to_cluster_dict
|
34 |
+
|
35 |
+
|
36 |
+
def is_aligned(span1: Tuple[int, int], span2: Tuple[int, int]) -> bool:
|
37 |
+
"""Return true if one of the span is a substring of the other span."""
|
38 |
+
|
39 |
+
if span1[0] >= span2[0] and span1[1] <= span2[1]:
|
40 |
+
return True
|
41 |
+
if span2[0] >= span1[0] and span2[1] <= span1[1]:
|
42 |
+
return True
|
43 |
+
return False
|
data_utils/__init__.py
ADDED
File without changes
|
data_utils/tensorize_dataset.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import List, Dict, Union
|
3 |
+
from transformers import PreTrainedTokenizerFast
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
|
7 |
+
class TensorizeDataset:
|
8 |
+
def __init__(
|
9 |
+
self, tokenizer: PreTrainedTokenizerFast, remove_singletons: bool = False
|
10 |
+
) -> None:
|
11 |
+
self.tokenizer = tokenizer
|
12 |
+
self.remove_singletons = remove_singletons
|
13 |
+
self.device = torch.device("cpu")
|
14 |
+
|
15 |
+
def tensorize_data(
|
16 |
+
self, split_data: List[Dict], training: bool = False
|
17 |
+
) -> List[Dict]:
|
18 |
+
tensorized_data = []
|
19 |
+
for document in split_data:
|
20 |
+
tensorized_data.append(
|
21 |
+
self.tensorize_instance_independent(document, training=training)
|
22 |
+
)
|
23 |
+
|
24 |
+
return tensorized_data
|
25 |
+
|
26 |
+
def process_segment(self, segment: List) -> List:
|
27 |
+
if self.tokenizer.sep_token_id is None:
|
28 |
+
# print("SentencePiece Tokenizer")
|
29 |
+
return [self.tokenizer.bos_token_id] + segment + [self.tokenizer.eos_token_id]
|
30 |
+
else:
|
31 |
+
# print("WordPiece Tokenizer")
|
32 |
+
return [self.tokenizer.cls_token_id] + segment + [self.tokenizer.sep_token_id]
|
33 |
+
|
34 |
+
def tensorize_instance_independent(
|
35 |
+
self, document: Dict, training: bool = False
|
36 |
+
) -> Dict:
|
37 |
+
segments: List[List[int]] = document["sentences"]
|
38 |
+
clusters: List = document.get("clusters", [])
|
39 |
+
ext_predicted_mentions: List = document.get("ext_predicted_mentions", [])
|
40 |
+
sentence_map: List[int] = document["sentence_map"]
|
41 |
+
subtoken_map: List[int] = document["subtoken_map"]
|
42 |
+
representatives: List = document.get("representatives", [])
|
43 |
+
representative_embs: List = document.get("representative_embs", [])
|
44 |
+
|
45 |
+
tensorized_sent: List[Tensor] = [
|
46 |
+
torch.unsqueeze(
|
47 |
+
torch.tensor(self.process_segment(sent), device=self.device), dim=0
|
48 |
+
)
|
49 |
+
for sent in segments
|
50 |
+
]
|
51 |
+
|
52 |
+
sent_len_list = [len(sent) for sent in segments]
|
53 |
+
output_dict = {
|
54 |
+
"tensorized_sent": tensorized_sent,
|
55 |
+
"sentences": segments,
|
56 |
+
"sent_len_list": sent_len_list,
|
57 |
+
"doc_key": document.get("doc_key", None),
|
58 |
+
"clusters": clusters,
|
59 |
+
"ext_predicted_mentions": ext_predicted_mentions,
|
60 |
+
"subtoken_map": subtoken_map,
|
61 |
+
"sentence_map": torch.tensor(sentence_map, device=self.device),
|
62 |
+
"representatives": representatives,
|
63 |
+
"representative_embs": representative_embs,
|
64 |
+
}
|
65 |
+
|
66 |
+
# Pass along other metadata
|
67 |
+
for key in document:
|
68 |
+
if key not in output_dict:
|
69 |
+
output_dict[key] = document[key]
|
70 |
+
|
71 |
+
if self.remove_singletons:
|
72 |
+
output_dict["clusters"] = [
|
73 |
+
cluster for cluster in output_dict["clusters"] if len(cluster) > 1
|
74 |
+
]
|
75 |
+
|
76 |
+
return output_dict
|
data_utils/utils.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from os import path
|
3 |
+
from typing import Dict
|
4 |
+
import jsonlines
|
5 |
+
|
6 |
+
|
7 |
+
def get_data_file(data_dir: str, split: str, max_segment_len: int) -> str:
|
8 |
+
jsonl_file = path.join(
|
9 |
+
data_dir, "{}.{}.met.jsonlines".format(split, max_segment_len)
|
10 |
+
)
|
11 |
+
print("File access: ", jsonl_file)
|
12 |
+
if path.exists(jsonl_file):
|
13 |
+
return jsonl_file
|
14 |
+
else:
|
15 |
+
jsonl_file = path.join(data_dir, "{}.met.jsonlines".format(split))
|
16 |
+
if path.exists(jsonl_file):
|
17 |
+
return jsonl_file
|
18 |
+
|
19 |
+
|
20 |
+
def load_dataset(
|
21 |
+
data_dir: str,
|
22 |
+
singleton_file: str = None,
|
23 |
+
max_segment_len: int = 2048,
|
24 |
+
num_train_docs: int = None,
|
25 |
+
num_dev_docs: int = None,
|
26 |
+
num_test_docs: int = None,
|
27 |
+
dataset_name: str = None,
|
28 |
+
) -> Dict:
|
29 |
+
all_splits = []
|
30 |
+
for split in ["train", "dev", "test"]:
|
31 |
+
jsonl_file = get_data_file(data_dir, split, max_segment_len)
|
32 |
+
if jsonl_file is None:
|
33 |
+
raise ValueError(f"No relevant files at {data_dir}")
|
34 |
+
split_data = []
|
35 |
+
with open(jsonl_file) as f:
|
36 |
+
for line in f:
|
37 |
+
load_dict = json.loads(line.strip())
|
38 |
+
load_dict["dataset_name"] = dataset_name
|
39 |
+
split_data.append(load_dict)
|
40 |
+
all_splits.append(split_data)
|
41 |
+
|
42 |
+
train_data, dev_data, test_data = all_splits
|
43 |
+
|
44 |
+
if singleton_file is not None and path.exists(singleton_file):
|
45 |
+
num_singletons = 0
|
46 |
+
with open(singleton_file) as f:
|
47 |
+
singleton_data = json.loads(f.read())
|
48 |
+
|
49 |
+
for instance in train_data:
|
50 |
+
doc_key = instance["doc_key"]
|
51 |
+
if doc_key in singleton_data:
|
52 |
+
if len(instance["clusters"]) != 0:
|
53 |
+
num_singletons += len(singleton_data[doc_key])
|
54 |
+
instance["clusters"][-1].extend(
|
55 |
+
[cluster[0] for cluster in singleton_data[doc_key]]
|
56 |
+
)
|
57 |
+
|
58 |
+
print("Added %d singletons" % num_singletons)
|
59 |
+
|
60 |
+
return {
|
61 |
+
"train": train_data[:num_train_docs],
|
62 |
+
"dev": dev_data[:num_dev_docs],
|
63 |
+
"test": test_data[:num_test_docs],
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
def load_eval_dataset(
|
68 |
+
data_dir: str, external_md_file: str, max_segment_len: int, dataset_name: str = None
|
69 |
+
) -> Dict:
|
70 |
+
data_dict = {}
|
71 |
+
for split in ["dev", "test"]:
|
72 |
+
jsonl_file = get_data_file(data_dir, split, max_segment_len)
|
73 |
+
if jsonl_file is not None:
|
74 |
+
split_data = []
|
75 |
+
with open(jsonl_file) as f:
|
76 |
+
for line in f:
|
77 |
+
load_dict = json.loads(line.strip())
|
78 |
+
load_dict["dataset_name"] = dataset_name
|
79 |
+
split_data.append(load_dict)
|
80 |
+
|
81 |
+
data_dict[split] = split_data
|
82 |
+
|
83 |
+
if external_md_file is not None and path.exists(external_md_file):
|
84 |
+
predicted_mentions = {}
|
85 |
+
with jsonlines.open(external_md_file, mode="r") as reader:
|
86 |
+
for line in reader:
|
87 |
+
predicted_mentions[line["doc_key"]] = line
|
88 |
+
for split in ["dev", "test"]:
|
89 |
+
for instance in data_dict[split]:
|
90 |
+
doc_key = instance["doc_key"]
|
91 |
+
if doc_key in predicted_mentions:
|
92 |
+
instance["ext_predicted_mentions"] = sorted(
|
93 |
+
predicted_mentions[doc_key]["pred_mentions"]
|
94 |
+
)
|
95 |
+
return data_dict
|
error_analysis/__init__.py
ADDED
File without changes
|
error_analysis/missing_clusters.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
from coref_utils.metrics import CorefEvaluator
|
7 |
+
from coref_utils.utils import get_mention_to_cluster
|
8 |
+
|
9 |
+
|
10 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
11 |
+
logging.basicConfig(format="%(message)s", level=logging.INFO)
|
12 |
+
logger = logging.getLogger()
|
13 |
+
|
14 |
+
|
15 |
+
def process_args():
|
16 |
+
"""Parse command line arguments."""
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
|
19 |
+
# Add arguments to parser
|
20 |
+
parser.add_argument("log_file", help="Log file", type=str)
|
21 |
+
|
22 |
+
args = parser.parse_args()
|
23 |
+
return args
|
24 |
+
|
25 |
+
|
26 |
+
def singleton_analysis(data):
|
27 |
+
max_length = 0
|
28 |
+
max_doc_id = ""
|
29 |
+
max_cluster = []
|
30 |
+
|
31 |
+
for instance in data:
|
32 |
+
|
33 |
+
gold_clusters, gold_mentions_to_cluster = get_mention_to_cluster(
|
34 |
+
instance["clusters"]
|
35 |
+
)
|
36 |
+
pred_clusters, pred_mentions_to_cluster = get_mention_to_cluster(
|
37 |
+
instance["predicted_clusters"]
|
38 |
+
)
|
39 |
+
|
40 |
+
for cluster in gold_clusters:
|
41 |
+
all_mention_unseen = True
|
42 |
+
for mention in cluster:
|
43 |
+
if mention in pred_mentions_to_cluster:
|
44 |
+
all_mention_unseen = False
|
45 |
+
break
|
46 |
+
|
47 |
+
if all_mention_unseen:
|
48 |
+
if len(cluster) > max_length:
|
49 |
+
max_length = len(cluster)
|
50 |
+
max_doc_id = instance["doc_key"]
|
51 |
+
max_cluster = cluster
|
52 |
+
|
53 |
+
print(max_doc_id)
|
54 |
+
print(max_length, max_cluster)
|
55 |
+
|
56 |
+
|
57 |
+
def reverse_analysis(data):
|
58 |
+
max_length = 0
|
59 |
+
max_doc_id = ""
|
60 |
+
max_cluster = []
|
61 |
+
|
62 |
+
for instance in data:
|
63 |
+
|
64 |
+
gold_clusters, gold_mentions_to_cluster = get_mention_to_cluster(
|
65 |
+
instance["clusters"]
|
66 |
+
)
|
67 |
+
pred_clusters, pred_mentions_to_cluster = get_mention_to_cluster(
|
68 |
+
instance["predicted_clusters"]
|
69 |
+
)
|
70 |
+
|
71 |
+
for cluster in pred_clusters:
|
72 |
+
all_mention_unseen = True
|
73 |
+
for mention in cluster:
|
74 |
+
if mention in gold_mentions_to_cluster:
|
75 |
+
all_mention_unseen = False
|
76 |
+
break
|
77 |
+
|
78 |
+
if all_mention_unseen:
|
79 |
+
if len(cluster) > max_length:
|
80 |
+
max_length = len(cluster)
|
81 |
+
max_doc_id = instance["doc_key"]
|
82 |
+
max_cluster = cluster
|
83 |
+
|
84 |
+
print(max_doc_id)
|
85 |
+
print(max_length, max_cluster)
|
86 |
+
|
87 |
+
|
88 |
+
def main():
|
89 |
+
args = process_args()
|
90 |
+
data = []
|
91 |
+
with open(args.log_file) as f:
|
92 |
+
for line in f:
|
93 |
+
data.append(json.loads(line))
|
94 |
+
singleton_analysis(data)
|
95 |
+
reverse_analysis(data)
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
main()
|
error_analysis/singleton_analysis.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
from coref_utils.metrics import CorefEvaluator
|
7 |
+
from coref_utils.utils import get_mention_to_cluster, filter_clusters
|
8 |
+
|
9 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
10 |
+
logging.basicConfig(format="%(message)s", level=logging.INFO)
|
11 |
+
logger = logging.getLogger()
|
12 |
+
|
13 |
+
|
14 |
+
def process_args():
|
15 |
+
"""Parse command line arguments."""
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
|
18 |
+
# Add arguments to parser
|
19 |
+
parser.add_argument("log_file", help="Log file", type=str)
|
20 |
+
|
21 |
+
args = parser.parse_args()
|
22 |
+
return args
|
23 |
+
|
24 |
+
|
25 |
+
def singleton_analysis(data):
|
26 |
+
gold_singletons = 0
|
27 |
+
pred_singletons = 0
|
28 |
+
|
29 |
+
# singleton_evaluator = CorefEvaluator()
|
30 |
+
non_singleton_evaluator = CorefEvaluator()
|
31 |
+
|
32 |
+
gold_cluster_lens = []
|
33 |
+
pred_cluster_lens = []
|
34 |
+
|
35 |
+
overlap_sing = 0
|
36 |
+
total_sing = 0
|
37 |
+
pred_sing = 0
|
38 |
+
|
39 |
+
for instance in data:
|
40 |
+
# Singleton performance
|
41 |
+
gold_clusters = set(
|
42 |
+
[tuple(cluster[0]) for cluster in instance["clusters"] if len(cluster) == 1]
|
43 |
+
)
|
44 |
+
pred_clusters = set(
|
45 |
+
[
|
46 |
+
tuple(cluster[0])
|
47 |
+
for cluster in instance["predicted_clusters"]
|
48 |
+
if len(cluster) == 1
|
49 |
+
]
|
50 |
+
)
|
51 |
+
|
52 |
+
total_sing += len(gold_clusters)
|
53 |
+
pred_sing += len(pred_clusters)
|
54 |
+
overlap_sing += len(gold_clusters.intersection(pred_clusters))
|
55 |
+
|
56 |
+
gold_singletons += len(gold_clusters)
|
57 |
+
pred_singletons += len(pred_clusters)
|
58 |
+
|
59 |
+
# predicted_clusters, mention_to_predicted = get_mention_to_cluster(pred_clusters, threshold=1)
|
60 |
+
# gold_clusters, mention_to_gold = get_mention_to_cluster(gold_clusters, threshold=1)
|
61 |
+
# singleton_evaluator.update(predicted_clusters, gold_clusters, mention_to_predicted, mention_to_gold)
|
62 |
+
|
63 |
+
# Non-singleton performance
|
64 |
+
gold_clusters = filter_clusters(instance["clusters"], threshold=2)
|
65 |
+
pred_clusters = filter_clusters(instance["predicted_clusters"], threshold=2)
|
66 |
+
|
67 |
+
gold_cluster_lens.extend([len(cluster) for cluster in instance["clusters"]])
|
68 |
+
pred_cluster_lens.extend(
|
69 |
+
[len(cluster) for cluster in instance["predicted_clusters"]]
|
70 |
+
)
|
71 |
+
|
72 |
+
# gold_clusters = filter_clusters(gold_clusters, threshold=1)
|
73 |
+
# pred_clusters = filter_clusters(pred_clusters, threshold=1)
|
74 |
+
|
75 |
+
mention_to_predicted = get_mention_to_cluster(pred_clusters)
|
76 |
+
mention_to_gold = get_mention_to_cluster(gold_clusters)
|
77 |
+
non_singleton_evaluator.update(
|
78 |
+
pred_clusters, gold_clusters, mention_to_predicted, mention_to_gold
|
79 |
+
)
|
80 |
+
|
81 |
+
logger.info(
|
82 |
+
"\nGT singletons: %d, Pred singletons: %d\n"
|
83 |
+
% (gold_singletons, pred_singletons)
|
84 |
+
)
|
85 |
+
recall_sing = overlap_sing / total_sing
|
86 |
+
pred_sing = overlap_sing / pred_sing
|
87 |
+
f_sing = 2 * recall_sing * pred_sing / (recall_sing + pred_sing)
|
88 |
+
logger.info(
|
89 |
+
f"\nSingletons - Recall: {recall_sing * 100}, Pred: {pred_sing * 100}, "
|
90 |
+
f"F1: {f_sing * 100}\n"
|
91 |
+
)
|
92 |
+
logger.info(
|
93 |
+
f"\nNon-singleton cluster lengths, Gold: {np.mean(gold_cluster_lens):.2f}, "
|
94 |
+
f"Pred: {np.mean(pred_cluster_lens)}\n"
|
95 |
+
)
|
96 |
+
|
97 |
+
for evaluator, evaluator_str in zip([non_singleton_evaluator], ["Non-singleton"]):
|
98 |
+
perf_str = ""
|
99 |
+
indv_metrics_list = ["MUC", "BCub", "CEAFE"]
|
100 |
+
for indv_metric, indv_evaluator in zip(indv_metrics_list, evaluator.evaluators):
|
101 |
+
# perf_str += ", " + indv_metric + ": {:.1f}".format(indv_evaluator.get_f1() * 100)
|
102 |
+
perf_str += "{} - {}".format(indv_metric, indv_evaluator.get_prf_str())
|
103 |
+
|
104 |
+
fscore = evaluator.get_f1() * 100
|
105 |
+
perf_str += "{} ".format(fscore)
|
106 |
+
perf_str = perf_str.strip(", ")
|
107 |
+
logger.info("\n%s\n%s\n" % (evaluator_str, perf_str))
|
108 |
+
|
109 |
+
|
110 |
+
def main():
|
111 |
+
args = process_args()
|
112 |
+
data = []
|
113 |
+
with open(args.log_file) as f:
|
114 |
+
for line in f:
|
115 |
+
data.append(json.loads(line))
|
116 |
+
singleton_analysis(data)
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
main()
|
experiment.py
ADDED
@@ -0,0 +1,1052 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import logging
|
5 |
+
import torch
|
6 |
+
|
7 |
+
## Uncomment the following line to make the code deterministic and use CUBLAS_WORKSPACE_CONFIG=:4096:8
|
8 |
+
torch.use_deterministic_algorithms(True)
|
9 |
+
import json
|
10 |
+
import numpy as np
|
11 |
+
import random
|
12 |
+
import wandb
|
13 |
+
|
14 |
+
from omegaconf import OmegaConf, open_dict
|
15 |
+
from os import path
|
16 |
+
from collections import OrderedDict, defaultdict
|
17 |
+
from transformers import get_linear_schedule_with_warmup
|
18 |
+
from transformers import AutoModel, AutoTokenizer
|
19 |
+
|
20 |
+
from data_utils.utils import load_dataset, load_eval_dataset
|
21 |
+
import pytorch_utils.utils as utils
|
22 |
+
from torch.profiler import profile, record_function, ProfilerActivity
|
23 |
+
|
24 |
+
from model.entity_ranking_model import EntityRankingModel
|
25 |
+
from model.mention_proposal import MentionProposalModule
|
26 |
+
from data_utils.tensorize_dataset import TensorizeDataset
|
27 |
+
from pytorch_utils.optimization_utils import get_inverse_square_root_decay
|
28 |
+
|
29 |
+
from utils_evaluate import coref_evaluation
|
30 |
+
|
31 |
+
from typing import Dict, Union, List, Optional
|
32 |
+
from omegaconf import DictConfig
|
33 |
+
import copy
|
34 |
+
|
35 |
+
logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO)
|
36 |
+
logger = logging.getLogger()
|
37 |
+
|
38 |
+
loss_acc_template_dict = {
|
39 |
+
"total": 0.0,
|
40 |
+
"ment_loss": 0.0,
|
41 |
+
"coref": 0.0,
|
42 |
+
"mention_count": 0.0,
|
43 |
+
"processed_docs": 0.0,
|
44 |
+
"ment_correct": 0.0,
|
45 |
+
"ment_total": 0.0,
|
46 |
+
"ment_tp": 0.0,
|
47 |
+
"ment_pp": 0.0,
|
48 |
+
"ment_ap": 0.0,
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
class Experiment:
|
53 |
+
"""Class for training and evaluating coreference models."""
|
54 |
+
|
55 |
+
def __init__(self, config: DictConfig):
|
56 |
+
self.config = config
|
57 |
+
|
58 |
+
print("Seeded: ", config.seed)
|
59 |
+
print("Cuda Available: ", torch.cuda.is_available())
|
60 |
+
|
61 |
+
# Whether to train or not
|
62 |
+
self.eval_model: bool = not self.config.train
|
63 |
+
|
64 |
+
# Initialize dictionary to track key training variables
|
65 |
+
self.train_info = {
|
66 |
+
"val_perf": 0.0,
|
67 |
+
"global_steps": 0,
|
68 |
+
"num_stuck_evals": 0,
|
69 |
+
"peak_memory": 0.0,
|
70 |
+
}
|
71 |
+
|
72 |
+
self.wandbdata = {}
|
73 |
+
|
74 |
+
# Initialize model path attributes
|
75 |
+
self.model_path = self.config.paths.model_path
|
76 |
+
self.best_model_path = self.config.paths.best_model_path
|
77 |
+
|
78 |
+
if not self.eval_model:
|
79 |
+
# Step 1 - Initialize model
|
80 |
+
self._build_model()
|
81 |
+
# Step 2 - Load Data - Data processing choices such as tokenizer will depend on the model
|
82 |
+
self._load_data()
|
83 |
+
# Step 3 - Resume training
|
84 |
+
self._setup_training()
|
85 |
+
# Step 4 - Loading the checkpoint also restores the training metadata
|
86 |
+
self._load_previous_checkpoint()
|
87 |
+
|
88 |
+
# All set to resume training
|
89 |
+
# But first check if training is remaining
|
90 |
+
if self._is_training_remaining():
|
91 |
+
self.train()
|
92 |
+
|
93 |
+
# Perform final evaluation
|
94 |
+
if path.exists(self.best_model_path):
|
95 |
+
# Step 1 - Initialize model
|
96 |
+
self._initialize_best_model()
|
97 |
+
# Step 2 - Load evaluation data
|
98 |
+
self._load_data()
|
99 |
+
# Step 3 - Perform evaluation
|
100 |
+
self.perform_final_eval()
|
101 |
+
else:
|
102 |
+
logger.info("No model accessible!")
|
103 |
+
sys.exit(1)
|
104 |
+
|
105 |
+
def _build_model(self) -> None:
|
106 |
+
"""Constructs the model with given config."""
|
107 |
+
|
108 |
+
model_params: DictConfig = self.config.model
|
109 |
+
train_config: DictConfig = self.config.trainer
|
110 |
+
|
111 |
+
self.model = EntityRankingModel(
|
112 |
+
model_config=model_params, train_config=train_config
|
113 |
+
)
|
114 |
+
|
115 |
+
if torch.cuda.is_available():
|
116 |
+
self.model.cuda(device=self.config.device)
|
117 |
+
|
118 |
+
# Print model
|
119 |
+
utils.print_model_info(self.model)
|
120 |
+
sys.stdout.flush()
|
121 |
+
|
122 |
+
def _load_data(self):
|
123 |
+
"""Loads and processes the training and evaluation data.
|
124 |
+
|
125 |
+
Loads the data concerning all the specified datasets for training and eval.
|
126 |
+
The first part of this method loads all the data from the preprocessed jsonline files.
|
127 |
+
In the second half, the loaded data is tensorized for consumption by the model.
|
128 |
+
|
129 |
+
Apart from loading and processing the data, the method also populates important
|
130 |
+
attributes such as:
|
131 |
+
num_train_docs_map (dict): Dictionary to maintain the number of training
|
132 |
+
docs per dataset which is useful for implementing sampling in joint training.
|
133 |
+
num_training_steps (int): Number of total training steps.
|
134 |
+
eval_per_k_steps (int): Number of gradient updates before each evaluation.
|
135 |
+
"""
|
136 |
+
|
137 |
+
self.data_iter_map, self.conll_data_dir, self.num_split_docs_map = (
|
138 |
+
{},
|
139 |
+
{},
|
140 |
+
{"train": {}, "dev": {}, "test": {}},
|
141 |
+
)
|
142 |
+
raw_data_map = {}
|
143 |
+
|
144 |
+
max_segment_len: int = self.config.model.doc_encoder.transformer.max_segment_len
|
145 |
+
model_name: str = self.config.model.doc_encoder.transformer.name
|
146 |
+
add_speaker_tokens: bool = self.config.model.doc_encoder.add_speaker_tokens
|
147 |
+
base_data_dir: str = path.abspath(self.config.paths.base_data_dir)
|
148 |
+
|
149 |
+
# Load data
|
150 |
+
for dataset_name, attributes in self.config.datasets.items():
|
151 |
+
num_train_docs: Optional[int] = attributes.get("num_train_docs", None)
|
152 |
+
num_dev_docs: Optional[int] = attributes.get("num_dev_docs", None)
|
153 |
+
num_test_docs: Optional[int] = attributes.get("num_test_docs", None)
|
154 |
+
singleton_file: Optional[str] = attributes.get("singleton_file", None)
|
155 |
+
external_md_file: Optional[str] = attributes.get("external_md_file", None)
|
156 |
+
|
157 |
+
if singleton_file is not None:
|
158 |
+
singleton_file = path.join(base_data_dir, singleton_file)
|
159 |
+
if path.exists(singleton_file):
|
160 |
+
logger.info(f"Singleton file found: {singleton_file}")
|
161 |
+
|
162 |
+
if external_md_file is not None:
|
163 |
+
external_md_file = path.join(base_data_dir, external_md_file)
|
164 |
+
if path.exists(external_md_file):
|
165 |
+
logger.info(
|
166 |
+
f"External mention detector file found: {external_md_file}"
|
167 |
+
)
|
168 |
+
|
169 |
+
# Data directory is a function of dataset name and tokenizer used
|
170 |
+
data_dir = path.join(path.join(base_data_dir, dataset_name), model_name)
|
171 |
+
# Check if speaker tokens are added
|
172 |
+
if add_speaker_tokens:
|
173 |
+
pot_data_dir = path.join(
|
174 |
+
path.join(path.join(base_data_dir, dataset_name)),
|
175 |
+
model_name + "_speaker",
|
176 |
+
)
|
177 |
+
if path.exists(pot_data_dir):
|
178 |
+
data_dir = pot_data_dir
|
179 |
+
|
180 |
+
# Datasets such as litbank have cross validation splits
|
181 |
+
if attributes.get("cross_val_split", None) is not None:
|
182 |
+
data_dir = path.join(data_dir, str(attributes.get("cross_val_split")))
|
183 |
+
|
184 |
+
logger.info("Data directory: %s" % data_dir)
|
185 |
+
|
186 |
+
# CoNLL data dir
|
187 |
+
if attributes.get("has_conll", False):
|
188 |
+
conll_dir = path.join(
|
189 |
+
path.join(path.join(base_data_dir, dataset_name)), "conll"
|
190 |
+
)
|
191 |
+
if attributes.get("cross_val_split", None) is not None:
|
192 |
+
# LitBank like datasets have cross validation splits
|
193 |
+
conll_dir = path.join(
|
194 |
+
conll_dir, str(attributes.get("cross_val_split"))
|
195 |
+
)
|
196 |
+
|
197 |
+
if path.exists(conll_dir):
|
198 |
+
self.conll_data_dir[dataset_name] = conll_dir
|
199 |
+
|
200 |
+
self.num_split_docs_map["train"][dataset_name] = num_train_docs
|
201 |
+
self.num_split_docs_map["dev"][dataset_name] = num_dev_docs
|
202 |
+
self.num_split_docs_map["test"][dataset_name] = num_test_docs
|
203 |
+
|
204 |
+
if self.eval_model:
|
205 |
+
print("In Eval Model DataLoader")
|
206 |
+
raw_data_map[dataset_name] = load_eval_dataset(
|
207 |
+
data_dir,
|
208 |
+
external_md_file=external_md_file,
|
209 |
+
max_segment_len=max_segment_len,
|
210 |
+
dataset_name=dataset_name,
|
211 |
+
)
|
212 |
+
else:
|
213 |
+
raw_data_map[dataset_name] = load_dataset(
|
214 |
+
data_dir,
|
215 |
+
singleton_file=singleton_file,
|
216 |
+
num_dev_docs=num_dev_docs,
|
217 |
+
num_test_docs=num_test_docs,
|
218 |
+
max_segment_len=max_segment_len,
|
219 |
+
dataset_name=dataset_name,
|
220 |
+
)
|
221 |
+
|
222 |
+
# Tensorize data
|
223 |
+
data_processor = TensorizeDataset(
|
224 |
+
self.model.get_tokenizer(),
|
225 |
+
remove_singletons=(not self.config.keep_singletons),
|
226 |
+
)
|
227 |
+
|
228 |
+
if self.eval_model:
|
229 |
+
for split in ["dev", "test"]:
|
230 |
+
self.data_iter_map[split] = {}
|
231 |
+
|
232 |
+
for dataset in raw_data_map:
|
233 |
+
for split in raw_data_map[dataset]:
|
234 |
+
self.data_iter_map[split][dataset] = data_processor.tensorize_data(
|
235 |
+
raw_data_map[dataset][split], training=False
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
# Training
|
239 |
+
for split in ["train", "dev", "test"]:
|
240 |
+
self.data_iter_map[split] = {}
|
241 |
+
training = split == "train"
|
242 |
+
for dataset in raw_data_map:
|
243 |
+
self.data_iter_map[split][dataset] = data_processor.tensorize_data(
|
244 |
+
raw_data_map[dataset][split], training=training
|
245 |
+
)
|
246 |
+
|
247 |
+
# Estimate number of training steps
|
248 |
+
if self.config.trainer.eval_per_k_steps is None:
|
249 |
+
# Eval steps is 1 epoch (with subsampling) of all the datasets used in joint training
|
250 |
+
self.config.trainer.eval_per_k_steps = sum(
|
251 |
+
self.num_split_docs_map["train"].values()
|
252 |
+
)
|
253 |
+
|
254 |
+
self.config.trainer.num_training_steps = (
|
255 |
+
self.config.trainer.eval_per_k_steps * self.config.trainer.max_evals
|
256 |
+
)
|
257 |
+
logger.info(
|
258 |
+
f"Number of training steps: {self.config.trainer.num_training_steps}"
|
259 |
+
)
|
260 |
+
|
261 |
+
logger.info(f"Eval per k steps: {self.config.trainer.eval_per_k_steps}")
|
262 |
+
|
263 |
+
def _load_previous_checkpoint(self):
|
264 |
+
"""Loads the last checkpoint or best checkpoint."""
|
265 |
+
|
266 |
+
# Resume training
|
267 |
+
print("Model Path: ", self.model_path)
|
268 |
+
print("Model Initialised:", torch.cuda.memory_summary(self.config.device))
|
269 |
+
if path.exists(self.model_path):
|
270 |
+
self.load_model(self.model_path, last_checkpoint=True)
|
271 |
+
logger.info("Model loaded\n")
|
272 |
+
print(
|
273 |
+
"Loaded Model Returned:", torch.cuda.memory_summary(self.config.device)
|
274 |
+
)
|
275 |
+
else:
|
276 |
+
# Starting training
|
277 |
+
logger.info("Model initialized\n")
|
278 |
+
sys.stdout.flush()
|
279 |
+
|
280 |
+
def _is_training_remaining(self):
|
281 |
+
"""Check if training is done or remaining.
|
282 |
+
|
283 |
+
There are two cases where we don't resume training:
|
284 |
+
(a) The dev performance has not improved for the allowed patience parameter number of evaluations.
|
285 |
+
(b) Number of gradient updates is already >= Total training steps.
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
bool: If true, we resume training. Otherwise do final evaluation.
|
289 |
+
"""
|
290 |
+
|
291 |
+
if self.train_info["num_stuck_evals"] >= self.config.trainer.patience:
|
292 |
+
return False
|
293 |
+
if self.train_info["global_steps"] >= self.config.trainer.num_training_steps:
|
294 |
+
return False
|
295 |
+
|
296 |
+
return True
|
297 |
+
|
298 |
+
def _setup_training(self):
|
299 |
+
"""Initialize optimizer and bookkeeping variables for training."""
|
300 |
+
|
301 |
+
# Dictionary to track key training variables
|
302 |
+
self.train_info = {
|
303 |
+
"val_perf": 0.0,
|
304 |
+
"global_steps": 0,
|
305 |
+
"num_stuck_evals": 0,
|
306 |
+
"peak_memory": 0.0,
|
307 |
+
"max_mem": 0.0,
|
308 |
+
}
|
309 |
+
|
310 |
+
# Initialize optimizers
|
311 |
+
self._initialize_optimizers()
|
312 |
+
|
313 |
+
def _initialize_optimizers(self):
|
314 |
+
"""Initialize model + optimizer(s). Check if there's a checkpoint in which case we resume from there."""
|
315 |
+
|
316 |
+
optimizer_config: DictConfig = self.config.optimizer
|
317 |
+
train_config: DictConfig = self.config.trainer
|
318 |
+
self.optimizer, self.optim_scheduler = {}, {}
|
319 |
+
|
320 |
+
if torch.cuda.is_available():
|
321 |
+
# Gradient scaler required for mixed precision training
|
322 |
+
self.scaler = torch.GradScaler("cuda")
|
323 |
+
else:
|
324 |
+
self.scaler = None
|
325 |
+
|
326 |
+
# Optimizer for clustering params
|
327 |
+
self.optimizer["mem"] = torch.optim.Adam(
|
328 |
+
self.model.get_params()[1], lr=optimizer_config.init_lr, eps=1e-6
|
329 |
+
)
|
330 |
+
|
331 |
+
if optimizer_config.lr_decay == "inv":
|
332 |
+
self.optim_scheduler["mem"] = get_inverse_square_root_decay(
|
333 |
+
self.optimizer["mem"], num_warmup_steps=0
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
# No warmup steps for model params
|
337 |
+
self.optim_scheduler["mem"] = get_linear_schedule_with_warmup(
|
338 |
+
self.optimizer["mem"],
|
339 |
+
num_warmup_steps=0,
|
340 |
+
num_training_steps=train_config.num_training_steps,
|
341 |
+
)
|
342 |
+
|
343 |
+
if self.config.model.doc_encoder.finetune:
|
344 |
+
# Optimizer for document encoder
|
345 |
+
no_decay = [
|
346 |
+
"bias",
|
347 |
+
"LayerNorm.weight",
|
348 |
+
] # No weight decay for bias and layernorm weights
|
349 |
+
encoder_params = self.model.get_params(named=True)[0]
|
350 |
+
grouped_param = [
|
351 |
+
{
|
352 |
+
"params": [
|
353 |
+
p
|
354 |
+
for n, p in encoder_params
|
355 |
+
if not any(nd in n for nd in no_decay)
|
356 |
+
],
|
357 |
+
"lr": optimizer_config.fine_tune_lr,
|
358 |
+
"weight_decay": 1e-2,
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"params": [
|
362 |
+
p for n, p in encoder_params if any(nd in n for nd in no_decay)
|
363 |
+
],
|
364 |
+
"lr": optimizer_config.fine_tune_lr,
|
365 |
+
"weight_decay": 0.0,
|
366 |
+
},
|
367 |
+
]
|
368 |
+
|
369 |
+
self.optimizer["doc"] = torch.optim.AdamW(
|
370 |
+
grouped_param, lr=optimizer_config.fine_tune_lr, eps=1e-6
|
371 |
+
)
|
372 |
+
|
373 |
+
# Scheduler for document encoder
|
374 |
+
num_warmup_steps = int(0.1 * train_config.num_training_steps)
|
375 |
+
if optimizer_config.lr_decay == "inv":
|
376 |
+
self.optim_scheduler["doc"] = get_inverse_square_root_decay(
|
377 |
+
self.optimizer["doc"], num_warmup_steps=num_warmup_steps
|
378 |
+
)
|
379 |
+
else:
|
380 |
+
self.optim_scheduler["doc"] = get_linear_schedule_with_warmup(
|
381 |
+
self.optimizer["doc"],
|
382 |
+
num_warmup_steps=num_warmup_steps,
|
383 |
+
num_training_steps=train_config.num_training_steps,
|
384 |
+
)
|
385 |
+
|
386 |
+
def agg(self, datadepdict):
|
387 |
+
agg_dict = defaultdict(float)
|
388 |
+
for dataset in datadepdict:
|
389 |
+
for key in datadepdict[dataset]:
|
390 |
+
agg_dict[key] += datadepdict[dataset][key]
|
391 |
+
|
392 |
+
agg_dict["loss_norm"] = (
|
393 |
+
agg_dict["coref"] / agg_dict["mention_count"]
|
394 |
+
+ agg_dict["ment_loss"] / agg_dict["ment_total"]
|
395 |
+
if agg_dict["mention_count"] > 0
|
396 |
+
else 0
|
397 |
+
)
|
398 |
+
agg_dict["ment_acc"] = agg_dict["ment_correct"] / agg_dict["ment_total"]
|
399 |
+
agg_dict["ment_prec"] = (
|
400 |
+
agg_dict["ment_tp"] / agg_dict["ment_pp"] if agg_dict["ment_pp"] > 0 else 0
|
401 |
+
)
|
402 |
+
agg_dict["ment_rec"] = (
|
403 |
+
agg_dict["ment_tp"] / agg_dict["ment_ap"] if agg_dict["ment_ap"] > 0 else 0
|
404 |
+
)
|
405 |
+
agg_dict["ment_f1"] = (
|
406 |
+
2
|
407 |
+
* (agg_dict["ment_prec"] * agg_dict["ment_rec"])
|
408 |
+
/ (agg_dict["ment_prec"] + agg_dict["ment_rec"])
|
409 |
+
if (agg_dict["ment_prec"] + agg_dict["ment_rec"]) > 0
|
410 |
+
else 0
|
411 |
+
)
|
412 |
+
|
413 |
+
return agg_dict
|
414 |
+
|
415 |
+
def train(self) -> None:
|
416 |
+
"""Method for training the model.
|
417 |
+
|
418 |
+
This method implements the training loop.
|
419 |
+
Within the training loop, the model is periodically evaluated on the dev set(s).
|
420 |
+
"""
|
421 |
+
|
422 |
+
model, optimizer, scheduler, scaler = (
|
423 |
+
self.model,
|
424 |
+
self.optimizer,
|
425 |
+
self.optim_scheduler,
|
426 |
+
self.scaler,
|
427 |
+
)
|
428 |
+
model.train()
|
429 |
+
|
430 |
+
optimizer_config, train_config = self.config.optimizer, self.config.trainer
|
431 |
+
|
432 |
+
start_time = time.time()
|
433 |
+
eval_time = {"total_time": 0, "num_evals": 0}
|
434 |
+
print("Started Training..")
|
435 |
+
while True:
|
436 |
+
logger.info("Steps done %d" % (self.train_info["global_steps"]))
|
437 |
+
|
438 |
+
train_data = self.runtime_load_dataset("train")
|
439 |
+
np.random.shuffle(train_data)
|
440 |
+
logger.info("Per epoch training steps: %d" % len(train_data))
|
441 |
+
logger.info("Per epoch training steps: %d" % len(train_data))
|
442 |
+
|
443 |
+
encoder_params, task_params = model.get_params()
|
444 |
+
stat_per_dataset = defaultdict(
|
445 |
+
lambda: copy.deepcopy(loss_acc_template_dict)
|
446 |
+
)
|
447 |
+
agg_stat = self.agg
|
448 |
+
|
449 |
+
# Training "epoch" -> May not correspond to actual epoch
|
450 |
+
for cur_document in train_data:
|
451 |
+
|
452 |
+
def handle_example(document: Dict) -> Union[None, float]:
|
453 |
+
self.train_info["global_steps"] += 1
|
454 |
+
for key in optimizer:
|
455 |
+
optimizer[key].zero_grad()
|
456 |
+
loss_dict: Dict = model.forward_training(document)
|
457 |
+
|
458 |
+
total_loss = loss_dict["total"]
|
459 |
+
|
460 |
+
if total_loss is None or torch.isnan(total_loss):
|
461 |
+
print("Problem with Loss. Should not occur often")
|
462 |
+
return None
|
463 |
+
|
464 |
+
total_loss.backward()
|
465 |
+
|
466 |
+
# Gradient clipping
|
467 |
+
try:
|
468 |
+
for name_ind, param_group in enumerate(
|
469 |
+
[encoder_params, task_params]
|
470 |
+
):
|
471 |
+
torch.nn.utils.clip_grad_norm_(
|
472 |
+
param_group,
|
473 |
+
optimizer_config.max_gradient_norm,
|
474 |
+
error_if_nonfinite=True,
|
475 |
+
)
|
476 |
+
except RuntimeError:
|
477 |
+
print("Non Finite Gradient")
|
478 |
+
return None
|
479 |
+
|
480 |
+
for key in optimizer:
|
481 |
+
self.wandbdata[key + "_lr"] = scheduler[key].get_last_lr()[0]
|
482 |
+
|
483 |
+
for key in optimizer:
|
484 |
+
optimizer[key].step()
|
485 |
+
scheduler[key].step()
|
486 |
+
|
487 |
+
loss_dict_items = {}
|
488 |
+
for key in loss_dict:
|
489 |
+
loss_dict_items[key] = loss_dict[key].item()
|
490 |
+
|
491 |
+
dataset_name = document["dataset_name"]
|
492 |
+
# print(f"Total loss {cur_document['doc_key']}: {total_loss.item()}")
|
493 |
+
|
494 |
+
for key in loss_dict_items:
|
495 |
+
stat_per_dataset[dataset_name][key] += loss_dict_items[key]
|
496 |
+
|
497 |
+
stat_per_dataset[dataset_name]["processed_docs"] += 1
|
498 |
+
|
499 |
+
return total_loss.item()
|
500 |
+
|
501 |
+
loss = handle_example(cur_document)
|
502 |
+
|
503 |
+
if self.train_info["global_steps"] % train_config.log_frequency == 0:
|
504 |
+
max_mem = (
|
505 |
+
(
|
506 |
+
torch.cuda.max_memory_allocated(self.config.device)
|
507 |
+
/ (1024**3)
|
508 |
+
)
|
509 |
+
if torch.cuda.is_available()
|
510 |
+
else 0.0
|
511 |
+
)
|
512 |
+
if self.train_info.get("max_mem", 0.0) < max_mem:
|
513 |
+
self.train_info["max_mem"] = max_mem
|
514 |
+
|
515 |
+
if loss is not None:
|
516 |
+
logger.info(
|
517 |
+
"{} {:.3f} Max mem {:.1f} GB".format(
|
518 |
+
cur_document["doc_key"],
|
519 |
+
loss,
|
520 |
+
max_mem,
|
521 |
+
)
|
522 |
+
)
|
523 |
+
sys.stdout.flush()
|
524 |
+
if torch.cuda.is_available():
|
525 |
+
torch.cuda.reset_peak_memory_stats()
|
526 |
+
|
527 |
+
if train_config.eval_per_k_steps and (
|
528 |
+
self.train_info["global_steps"] % train_config.eval_per_k_steps == 0
|
529 |
+
):
|
530 |
+
print("Eval needs to be done here")
|
531 |
+
coref_dict = {}
|
532 |
+
print(stat_per_dataset)
|
533 |
+
if self.config.use_wandb:
|
534 |
+
self._wandb_log(
|
535 |
+
split="train",
|
536 |
+
stat_per_dataset=stat_per_dataset,
|
537 |
+
agg_stat=agg_stat,
|
538 |
+
coref_dict=coref_dict,
|
539 |
+
step=self.train_info["global_steps"]
|
540 |
+
// train_config.eval_per_k_steps,
|
541 |
+
)
|
542 |
+
|
543 |
+
stat_per_dataset = defaultdict(
|
544 |
+
lambda: copy.deepcopy(loss_acc_template_dict)
|
545 |
+
)
|
546 |
+
|
547 |
+
macro_fscore = self.periodic_model_eval()
|
548 |
+
|
549 |
+
model.train()
|
550 |
+
# Get elapsed time
|
551 |
+
elapsed_time = time.time() - start_time
|
552 |
+
|
553 |
+
start_time = time.time()
|
554 |
+
logger.info(
|
555 |
+
"Steps: %d, Micro F1: %.1f, Max Micro F1: %.1f, Time: %.2f"
|
556 |
+
% (
|
557 |
+
self.train_info["global_steps"],
|
558 |
+
macro_fscore,
|
559 |
+
self.train_info["val_perf"],
|
560 |
+
elapsed_time,
|
561 |
+
)
|
562 |
+
)
|
563 |
+
|
564 |
+
# Check stopping criteria
|
565 |
+
if not self._is_training_remaining():
|
566 |
+
break
|
567 |
+
|
568 |
+
# Check stopping criteria
|
569 |
+
if not self._is_training_remaining():
|
570 |
+
break
|
571 |
+
|
572 |
+
logger.handlers[0].flush()
|
573 |
+
|
574 |
+
def runtime_load_dataset(self, split):
|
575 |
+
# Shuffle and load the training data
|
576 |
+
data = []
|
577 |
+
for dataset, dataset_data in self.data_iter_map[split].items():
|
578 |
+
np.random.shuffle(
|
579 |
+
dataset_data
|
580 |
+
) ### Commenting this so that we can have a deterministic training
|
581 |
+
if self.num_split_docs_map[split].get(dataset, None) is not None:
|
582 |
+
# Subsampling the data - This is useful in joint training
|
583 |
+
logger.info(
|
584 |
+
f"{dataset}: Subsampled {self.num_split_docs_map[split].get(dataset)}"
|
585 |
+
)
|
586 |
+
random_indices = range(self.num_split_docs_map[split].get(dataset))
|
587 |
+
data += [dataset_data[idx] for idx in random_indices]
|
588 |
+
else:
|
589 |
+
data += dataset_data
|
590 |
+
return data
|
591 |
+
|
592 |
+
def _wandb_log(self, split, stat_per_dataset, agg_stat, coref_dict, step=None):
|
593 |
+
for dataset_name in stat_per_dataset:
|
594 |
+
for metric_vals in stat_per_dataset[dataset_name]:
|
595 |
+
wandb.log(
|
596 |
+
data={
|
597 |
+
f"{split}/{dataset_name}/{metric_vals}": stat_per_dataset[
|
598 |
+
dataset_name
|
599 |
+
][metric_vals]
|
600 |
+
},
|
601 |
+
step=step,
|
602 |
+
)
|
603 |
+
if stat_per_dataset[dataset_name]["mention_count"] > 0.0:
|
604 |
+
ment_prec = (
|
605 |
+
stat_per_dataset[dataset_name]["ment_tp"]
|
606 |
+
/ stat_per_dataset[dataset_name]["ment_pp"]
|
607 |
+
if stat_per_dataset[dataset_name]["ment_pp"] > 0
|
608 |
+
else 0
|
609 |
+
)
|
610 |
+
ment_rec = (
|
611 |
+
stat_per_dataset[dataset_name]["ment_tp"]
|
612 |
+
/ stat_per_dataset[dataset_name]["ment_ap"]
|
613 |
+
if stat_per_dataset[dataset_name]["ment_ap"] > 0
|
614 |
+
else 0
|
615 |
+
)
|
616 |
+
ment_f1 = (
|
617 |
+
2 * (ment_prec * ment_rec) / (ment_prec + ment_rec)
|
618 |
+
if (ment_prec + ment_rec) > 0
|
619 |
+
else 0
|
620 |
+
)
|
621 |
+
wandb.log(
|
622 |
+
data={
|
623 |
+
f"{split}/{dataset_name}/loss_norm": stat_per_dataset[
|
624 |
+
dataset_name
|
625 |
+
]["coref"]
|
626 |
+
/ stat_per_dataset[dataset_name]["mention_count"]
|
627 |
+
+ stat_per_dataset[dataset_name]["ment_loss"]
|
628 |
+
/ stat_per_dataset[dataset_name]["ment_total"],
|
629 |
+
f"{split}/{dataset_name}/ment_acc": stat_per_dataset[
|
630 |
+
dataset_name
|
631 |
+
]["ment_correct"]
|
632 |
+
/ stat_per_dataset[dataset_name]["ment_total"],
|
633 |
+
f"{split}/{dataset_name}/ment_prec": ment_prec,
|
634 |
+
f"{split}/{dataset_name}/ment_rec": ment_rec,
|
635 |
+
f"{split}/{dataset_name}/ment_f1": ment_f1,
|
636 |
+
},
|
637 |
+
step=step,
|
638 |
+
)
|
639 |
+
else:
|
640 |
+
print("No mentions processed. Should not occur many times.")
|
641 |
+
|
642 |
+
if agg_stat:
|
643 |
+
for metric in agg_stat(stat_per_dataset):
|
644 |
+
wandb.log(
|
645 |
+
data={f"{split}/{metric}": agg_stat(stat_per_dataset)[metric]},
|
646 |
+
step=step,
|
647 |
+
)
|
648 |
+
|
649 |
+
for dataset in coref_dict:
|
650 |
+
for key in coref_dict[dataset]:
|
651 |
+
# Log result for individual metrics
|
652 |
+
if isinstance(coref_dict[dataset][key], dict):
|
653 |
+
wandb.log(
|
654 |
+
data={
|
655 |
+
f"{split}/{dataset}/{key}": coref_dict[dataset][key].get(
|
656 |
+
"fscore", 0.0
|
657 |
+
)
|
658 |
+
},
|
659 |
+
step=step,
|
660 |
+
)
|
661 |
+
|
662 |
+
# Log the overall F-score
|
663 |
+
wandb.log(
|
664 |
+
data={
|
665 |
+
f"{split}/{dataset}/CoNLL": coref_dict[dataset].get("fscore", 0.0)
|
666 |
+
},
|
667 |
+
step=step,
|
668 |
+
)
|
669 |
+
|
670 |
+
wandb.log(
|
671 |
+
data={
|
672 |
+
f"{split}/{dataset}/Micro-F1": coref_dict[dataset].get(
|
673 |
+
"f1_micro", 0.0
|
674 |
+
)
|
675 |
+
},
|
676 |
+
step=step,
|
677 |
+
)
|
678 |
+
|
679 |
+
wandb.log(
|
680 |
+
data={
|
681 |
+
f"{split}/{dataset}/Macro-F1": coref_dict[dataset].get(
|
682 |
+
"f1_macro", 0.0
|
683 |
+
)
|
684 |
+
},
|
685 |
+
step=step,
|
686 |
+
)
|
687 |
+
|
688 |
+
wandb.log(data=self.wandbdata, step=step)
|
689 |
+
|
690 |
+
@torch.no_grad()
|
691 |
+
def periodic_model_eval(self) -> float:
|
692 |
+
"""Method for evaluating and saving the model during the training loop.
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
float: Average CoNLL F-score over all the development sets of datasets.
|
696 |
+
"""
|
697 |
+
|
698 |
+
self.model.eval()
|
699 |
+
|
700 |
+
## Dev Loss Calculations:
|
701 |
+
dev_data = self.runtime_load_dataset("dev")
|
702 |
+
np.random.shuffle(dev_data)
|
703 |
+
stat_per_dataset = defaultdict(lambda: copy.deepcopy(loss_acc_template_dict))
|
704 |
+
agg_stat = self.agg
|
705 |
+
|
706 |
+
for cur_document in dev_data:
|
707 |
+
|
708 |
+
def handle_example(document: Dict) -> Union[None, float]:
|
709 |
+
loss_dict: Dict = self.model.forward_training(document)
|
710 |
+
total_loss = loss_dict["total"]
|
711 |
+
if total_loss is None or torch.isnan(total_loss):
|
712 |
+
print("Problem with Loss. Should not occur many times")
|
713 |
+
return None
|
714 |
+
|
715 |
+
loss_dict_items = {}
|
716 |
+
for key in loss_dict:
|
717 |
+
loss_dict_items[key] = loss_dict[key].item()
|
718 |
+
|
719 |
+
dataset_name = document["dataset_name"]
|
720 |
+
|
721 |
+
for key in loss_dict_items:
|
722 |
+
stat_per_dataset[dataset_name][key] += loss_dict_items[key]
|
723 |
+
|
724 |
+
stat_per_dataset[dataset_name]["processed_docs"] += 1
|
725 |
+
return total_loss.item()
|
726 |
+
|
727 |
+
loss = handle_example(cur_document)
|
728 |
+
if loss is None:
|
729 |
+
continue
|
730 |
+
|
731 |
+
# Dev performance
|
732 |
+
coref_dict = {}
|
733 |
+
train_config = self.config.trainer
|
734 |
+
for dataset in self.data_iter_map["dev"]:
|
735 |
+
for go in [False]:
|
736 |
+
for tf in [False]:
|
737 |
+
result_dict = coref_evaluation(
|
738 |
+
self.config,
|
739 |
+
self.model,
|
740 |
+
self.data_iter_map,
|
741 |
+
dataset,
|
742 |
+
teacher_force=tf,
|
743 |
+
gold_mentions=go,
|
744 |
+
_iter="_"
|
745 |
+
+ str(
|
746 |
+
self.train_info["global_steps"]
|
747 |
+
// train_config.eval_per_k_steps
|
748 |
+
),
|
749 |
+
conll_data_dir=self.conll_data_dir,
|
750 |
+
)
|
751 |
+
|
752 |
+
coref_dict[dataset] = result_dict
|
753 |
+
|
754 |
+
if self.config.use_wandb:
|
755 |
+
self._wandb_log(
|
756 |
+
split="dev",
|
757 |
+
stat_per_dataset=stat_per_dataset,
|
758 |
+
agg_stat=agg_stat,
|
759 |
+
coref_dict=coref_dict,
|
760 |
+
step=self.train_info["global_steps"] // train_config.eval_per_k_steps,
|
761 |
+
)
|
762 |
+
|
763 |
+
# Calculate Mean F-score
|
764 |
+
fscore = sum([coref_dict[dataset]["fscore"] for dataset in coref_dict]) / len(
|
765 |
+
coref_dict
|
766 |
+
)
|
767 |
+
micro_fscore = sum(
|
768 |
+
[coref_dict[dataset]["f1_micro"] for dataset in coref_dict]
|
769 |
+
) / len(coref_dict)
|
770 |
+
macro_fscore = sum(
|
771 |
+
[coref_dict[dataset]["f1_macro"] for dataset in coref_dict]
|
772 |
+
) / len(coref_dict)
|
773 |
+
|
774 |
+
logger.info(
|
775 |
+
"Avg Macro F1: %.1f, Max Micro F1: %.1f"
|
776 |
+
% (macro_fscore, self.train_info["val_perf"])
|
777 |
+
)
|
778 |
+
logger.info("Avg Macro F1: %.1f" % (macro_fscore))
|
779 |
+
|
780 |
+
# Update model if dev performance improves
|
781 |
+
if macro_fscore > self.train_info["val_perf"]:
|
782 |
+
# Update training bookkeeping variables
|
783 |
+
self.train_info["num_stuck_evals"] = 0
|
784 |
+
self.train_info["val_perf"] = macro_fscore
|
785 |
+
|
786 |
+
# Save the best model
|
787 |
+
logger.info("Saving best model")
|
788 |
+
self.save_model(self.best_model_path, last_checkpoint=False)
|
789 |
+
else:
|
790 |
+
self.train_info["num_stuck_evals"] += 1
|
791 |
+
|
792 |
+
# Save model
|
793 |
+
if self.config.trainer.to_save_model:
|
794 |
+
self.save_model(self.model_path, last_checkpoint=True)
|
795 |
+
|
796 |
+
# Go back to training mode
|
797 |
+
self.model.train()
|
798 |
+
return macro_fscore
|
799 |
+
|
800 |
+
@torch.no_grad()
|
801 |
+
def perform_final_eval(self) -> None:
|
802 |
+
"""Method to evaluate the model after training has finished."""
|
803 |
+
|
804 |
+
self.model.eval()
|
805 |
+
base_output_dict = OmegaConf.to_container(self.config)
|
806 |
+
perf_summary = {"best_perf": self.train_info["val_perf"]}
|
807 |
+
if self.config.paths.model_dir:
|
808 |
+
perf_summary["model_dir"] = path.normpath(self.config.paths.model_dir)
|
809 |
+
|
810 |
+
logger.info(
|
811 |
+
"Max training memory: %.1f GB" % self.train_info.get("max_mem", 0.0)
|
812 |
+
)
|
813 |
+
|
814 |
+
logger.info("Validation performance: %.1f" % self.train_info["val_perf"])
|
815 |
+
|
816 |
+
perf_file_dict = {}
|
817 |
+
dataset_output_dict = {}
|
818 |
+
|
819 |
+
for split in ["dev", "test"]:
|
820 |
+
perf_summary[split] = {}
|
821 |
+
logger.info("\n")
|
822 |
+
logger.info("%s" % split.capitalize())
|
823 |
+
coref_dict = {}
|
824 |
+
for dataset in self.data_iter_map.get(split, []):
|
825 |
+
dataset_dir = path.join(self.config.paths.model_dir, dataset)
|
826 |
+
if not path.exists(dataset_dir):
|
827 |
+
os.makedirs(dataset_dir)
|
828 |
+
|
829 |
+
if dataset not in dataset_output_dict:
|
830 |
+
dataset_output_dict[dataset] = {}
|
831 |
+
if dataset not in perf_file_dict:
|
832 |
+
perf_file_dict[dataset] = path.join(dataset_dir, f"perf.json")
|
833 |
+
|
834 |
+
print("Dataset Name:", self.config.datasets[dataset].name)
|
835 |
+
logger.info("Dataset: %s\n" % self.config.datasets[dataset].name)
|
836 |
+
|
837 |
+
for go in [False]:
|
838 |
+
for tf in [False]:
|
839 |
+
result_dict = coref_evaluation(
|
840 |
+
self.config,
|
841 |
+
self.model,
|
842 |
+
self.data_iter_map,
|
843 |
+
dataset=dataset,
|
844 |
+
split=split,
|
845 |
+
teacher_force=tf,
|
846 |
+
gold_mentions=go,
|
847 |
+
final_eval=True,
|
848 |
+
conll_data_dir=self.conll_data_dir,
|
849 |
+
)
|
850 |
+
coref_dict[dataset] = result_dict
|
851 |
+
dataset_output_dict[dataset][split] = result_dict
|
852 |
+
perf_summary[split][dataset] = result_dict["f1_micro"]
|
853 |
+
|
854 |
+
if self.config.use_wandb:
|
855 |
+
self._wandb_log(
|
856 |
+
split=split,
|
857 |
+
stat_per_dataset={},
|
858 |
+
agg_stat=None,
|
859 |
+
coref_dict=coref_dict,
|
860 |
+
step=None,
|
861 |
+
)
|
862 |
+
|
863 |
+
sys.stdout.flush()
|
864 |
+
|
865 |
+
for dataset, output_dict in dataset_output_dict.items():
|
866 |
+
perf_file = perf_file_dict[dataset]
|
867 |
+
json.dump(output_dict, open(perf_file, "w"), indent=2)
|
868 |
+
logger.info("Final performance summary at %s" % path.abspath(perf_file))
|
869 |
+
|
870 |
+
summary_file = path.join(self.config.paths.model_dir, "perf.json")
|
871 |
+
json.dump(perf_summary, open(summary_file, "w"), indent=2)
|
872 |
+
logger.info("Performance summary file: %s" % path.abspath(summary_file))
|
873 |
+
|
874 |
+
def _initialize_best_model(self):
|
875 |
+
checkpoint = torch.load(
|
876 |
+
self.best_model_path,
|
877 |
+
map_location="cpu",
|
878 |
+
)
|
879 |
+
config = checkpoint["config"]
|
880 |
+
|
881 |
+
## Due to version changes -- these changes are necessary
|
882 |
+
# if
|
883 |
+
|
884 |
+
if self.config.get("override_encoder", False):
|
885 |
+
model_config = config.model
|
886 |
+
print(type(self.config.model.doc_encoder.transformer))
|
887 |
+
print(self.config.model.doc_encoder.transformer)
|
888 |
+
model_config.doc_encoder.transformer = (
|
889 |
+
self.config.model.doc_encoder.transformer
|
890 |
+
)
|
891 |
+
|
892 |
+
# Override memory
|
893 |
+
# For e.g., can test with a different bounded memory size
|
894 |
+
if self.config.get("override_memory", False):
|
895 |
+
model_config = config.model
|
896 |
+
model_config.memory = self.config.model.memory
|
897 |
+
|
898 |
+
with open_dict(config):
|
899 |
+
print("Config change")
|
900 |
+
config.model.mention_params.ext_ment = (
|
901 |
+
self.config.model.mention_params.ext_ment
|
902 |
+
)
|
903 |
+
config = utils.fill_missing_configs(config, self.config)
|
904 |
+
print("Type: ", config.model.memory.type)
|
905 |
+
|
906 |
+
self.config.model = config.model
|
907 |
+
|
908 |
+
self.train_info = checkpoint["train_info"]
|
909 |
+
|
910 |
+
if self.config.model.doc_encoder.finetune:
|
911 |
+
# Load the document encoder params if encoder is finetuned
|
912 |
+
doc_encoder_dir = path.join(
|
913 |
+
path.dirname(self.best_model_path),
|
914 |
+
self.config.paths.doc_encoder_dirname,
|
915 |
+
)
|
916 |
+
if path.exists(doc_encoder_dir):
|
917 |
+
logger.info(
|
918 |
+
"Loading document encoder from %s" % path.abspath(doc_encoder_dir)
|
919 |
+
)
|
920 |
+
config.model.doc_encoder.transformer.model_str = doc_encoder_dir
|
921 |
+
|
922 |
+
self.model = EntityRankingModel(config.model, config.trainer)
|
923 |
+
|
924 |
+
# Document encoder parameters will be loaded via the huggingface initialization
|
925 |
+
self.model.load_state_dict(checkpoint["model"], strict=False)
|
926 |
+
|
927 |
+
if torch.cuda.is_available():
|
928 |
+
self.model.cuda(device=self.config.device)
|
929 |
+
|
930 |
+
def load_model(self, location: str, last_checkpoint=True) -> None:
|
931 |
+
"""Load model from given location.
|
932 |
+
|
933 |
+
Args:
|
934 |
+
location: str
|
935 |
+
Location of checkpoint
|
936 |
+
last_checkpoint: bool
|
937 |
+
Whether the checkpoint is the last one saved or not.
|
938 |
+
If false, don't load optimizers, schedulers, and other training variables.
|
939 |
+
"""
|
940 |
+
|
941 |
+
checkpoint = torch.load(location, map_location="cpu")
|
942 |
+
logger.info("Loading model from %s" % path.abspath(location))
|
943 |
+
|
944 |
+
# self.config = checkpoint["config"] ## Commented out so that it does not load the config of the trained model. Removed comment
|
945 |
+
|
946 |
+
self.model.load_state_dict(
|
947 |
+
checkpoint["model"], strict=False
|
948 |
+
) ## No encoder in this model so strict=False is compulsary. No other weight missing. Checked
|
949 |
+
|
950 |
+
# self.train_info = checkpoint["train_info"] ## No train info transfer too. ## Transferring
|
951 |
+
|
952 |
+
if self.config.model.doc_encoder.finetune:
|
953 |
+
# Load the document encoder params if encoder is finetuned
|
954 |
+
doc_encoder_dir = path.join(
|
955 |
+
path.dirname(location), self.config.paths.doc_encoder_dirname
|
956 |
+
)
|
957 |
+
logger.info(
|
958 |
+
"Loading document encoder from %s" % path.abspath(doc_encoder_dir)
|
959 |
+
)
|
960 |
+
|
961 |
+
# Load the encoder
|
962 |
+
self.model.mention_proposer.doc_encoder.lm_encoder = (
|
963 |
+
AutoModel.from_pretrained(pretrained_model_name_or_path=doc_encoder_dir)
|
964 |
+
)
|
965 |
+
self.model.mention_proposer.doc_encoder.tokenizer = (
|
966 |
+
AutoTokenizer.from_pretrained(
|
967 |
+
pretrained_model_name_or_path=doc_encoder_dir,
|
968 |
+
clean_up_tokenization_spaces=True,
|
969 |
+
)
|
970 |
+
)
|
971 |
+
if self.model.mention_proposer.doc_encoder.config.finetune:
|
972 |
+
self.model.mention_proposer.doc_encoder.lm_encoder.gradient_checkpointing_enable()
|
973 |
+
|
974 |
+
if torch.cuda.is_available():
|
975 |
+
self.model.cuda(device=self.config.device)
|
976 |
+
|
977 |
+
print("Loaded Model:", torch.cuda.memory_summary())
|
978 |
+
print(
|
979 |
+
"Gradient checkpointing enabled? ", torch.autograd.grad_checkpoint_enabled()
|
980 |
+
)
|
981 |
+
del checkpoint
|
982 |
+
torch.cuda.empty_cache()
|
983 |
+
|
984 |
+
def save_model(self, location: os.PathLike, last_checkpoint=True) -> None:
|
985 |
+
"""Save model.
|
986 |
+
|
987 |
+
Args:
|
988 |
+
location: Location of checkpoint
|
989 |
+
last_checkpoint:
|
990 |
+
Whether the checkpoint is the last one saved or not.
|
991 |
+
If false, don't save optimizers and schedulers which take up a lot of space.
|
992 |
+
"""
|
993 |
+
|
994 |
+
model_state_dict = OrderedDict(self.model.state_dict())
|
995 |
+
doc_encoder_state_dict = {}
|
996 |
+
|
997 |
+
# Separate the doc_encoder state dict
|
998 |
+
# We will save the model in two parts:
|
999 |
+
# (a) Doc encoder parameters - Useful for final upload to huggingface
|
1000 |
+
# (b) Rest of the model parameters, optimizers, schedulers, and other bookkeeping variables
|
1001 |
+
for key in self.model.state_dict():
|
1002 |
+
if "lm_encoder." in key:
|
1003 |
+
doc_encoder_state_dict[key] = model_state_dict[key]
|
1004 |
+
del model_state_dict[key]
|
1005 |
+
|
1006 |
+
# Save the document encoder params
|
1007 |
+
if self.config.model.doc_encoder.finetune:
|
1008 |
+
doc_encoder_dir = path.join(
|
1009 |
+
path.dirname(location), self.config.paths.doc_encoder_dirname
|
1010 |
+
)
|
1011 |
+
if not path.exists(doc_encoder_dir):
|
1012 |
+
os.makedirs(doc_encoder_dir)
|
1013 |
+
|
1014 |
+
logger.info(f"Encoder saved at {path.abspath(doc_encoder_dir)}")
|
1015 |
+
# Save the encoder
|
1016 |
+
self.model.mention_proposer.doc_encoder.lm_encoder.save_pretrained(
|
1017 |
+
save_directory=doc_encoder_dir, save_config=True
|
1018 |
+
)
|
1019 |
+
# Save the tokenizer
|
1020 |
+
self.model.mention_proposer.doc_encoder.tokenizer.save_pretrained(
|
1021 |
+
doc_encoder_dir
|
1022 |
+
)
|
1023 |
+
|
1024 |
+
save_dict = {
|
1025 |
+
"train_info": self.train_info,
|
1026 |
+
"model": model_state_dict,
|
1027 |
+
"rng_state": torch.get_rng_state(),
|
1028 |
+
"np_rng_state": np.random.get_state(),
|
1029 |
+
"config": self.config,
|
1030 |
+
}
|
1031 |
+
|
1032 |
+
if self.scaler is not None:
|
1033 |
+
save_dict["scaler"] = self.scaler.state_dict()
|
1034 |
+
|
1035 |
+
if last_checkpoint:
|
1036 |
+
# For last checkpoint save the optimizer and scheduler states as well
|
1037 |
+
save_dict["optimizer"] = {}
|
1038 |
+
save_dict["scheduler"] = {}
|
1039 |
+
|
1040 |
+
param_groups: List[str] = (
|
1041 |
+
["mem", "doc"] if self.config.model.doc_encoder.finetune else ["mem"]
|
1042 |
+
)
|
1043 |
+
for param_group in param_groups:
|
1044 |
+
save_dict["optimizer"][param_group] = self.optimizer[
|
1045 |
+
param_group
|
1046 |
+
].state_dict()
|
1047 |
+
save_dict["scheduler"][param_group] = self.optim_scheduler[
|
1048 |
+
param_group
|
1049 |
+
].state_dict()
|
1050 |
+
|
1051 |
+
torch.save(save_dict, location)
|
1052 |
+
logger.info(f"Model saved at: {path.abspath(location)}")
|