import time import spacy import json import gradio as gr from spacy.tokens import Doc, Span from spacy import displacy import matplotlib.pyplot as plt from matplotlib.colors import to_hex from inference.model_inference import Inference from configs import * def get_MEIRa_clusters(doc_name, text, model_type): model_str = MODELS[model_type] model = Inference(model_str) output_dict = model.perform_coreference(text, doc_name) return output_dict def coref_visualizer(doc_name, text, model_type): coref_output = get_MEIRa_clusters(doc_name, text, model_type) tokens = coref_output["tokenized_doc"] clusters = coref_output["clusters"] labels = coref_output["representative_names"] ## Get a pastel palette color_palette = { label: to_hex(plt.cm.get_cmap("tab20", len(labels))(i)) for i, label in enumerate(labels) } nlp = spacy.blank("en") doc = Doc(nlp.vocab, words=tokens) print("Tokens:", tokens, flush=True) # print("Doc:", doc, flush=True) print(color_palette) spans = [] for cluster_ind, cluster in enumerate(clusters[:-1]): label = labels[cluster_ind] for (start, end), mention in cluster: span = Span(doc, start, end + 1, label=label) spans.append(span) doc.spans["coref_spans"] = spans print("Rendering the visualization...") # color_map = {label: color_palette[i] for i, label in enumerate(labels)} # Generate the HTML output html = displacy.render( doc, style="span", options={ "spans_key": "coref_spans", "colors": color_palette, }, jupyter=False, ) ## Create a hash based on time and doc_name time_hash = hash(str(time.time()) + doc_name) html_file = f"gradio_outputs/output_{time_hash}.html" json_file = f"gradio_outputs/output_{time_hash}.json" with open(html_file, "w") as f: f.write(html) with open(json_file, "w") as f: json.dump(coref_output, f) return ( html_file, json_file, gr.DownloadButton(value=html_file, visible=True), gr.DownloadButton(value=json_file, visible=True), ) def download_html(): return gr.DownloadButton(visible=False) def download_json(): return gr.DownloadButton(visible=False) options = ["static", "hybrid"] with gr.Blocks() as demo: html_file = gr.File(visible=False) json_file = gr.File(visible=False) html_button = gr.DownloadButton("Download HTML", visible=False) json_button = gr.DownloadButton("Download JSON", visible=False) html_button.click() json_button.click() iface = gr.Interface( fn=coref_visualizer, inputs=[ gr.Textbox(lines=1, placeholder="Enter document name:"), gr.Textbox(lines=100, placeholder="Enter text for coreference resolution:"), gr.Radio(choices=options, label="Select an Option"), ], outputs=[ html_file, json_file, html_button, json_button, ], title="Coreference Resolution Visualizer", ) demo.launch(debug=True)