Spaces:
Sleeping
Sleeping
File size: 13,505 Bytes
8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import torch
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from PIL import Image
from matplotlib import rc, patches, colors
rc("font", **{"family": "serif", "serif": ["Roman"]})
rc("text", usetex=True)
rc("image", interpolation="none")
rc("text.latex", preamble=r"\usepackage{amsmath} \usepackage{amssymb}")
from datasets import get_attr_max_min
HAMMER = np.array(Image.open("./hammer.png").resize((35, 35))) / 255
class MidpointNormalize(colors.Normalize):
def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
self.midpoint = midpoint
colors.Normalize.__init__(self, vmin, vmax, clip)
def __call__(self, value, clip=None):
v_ext = np.max([np.abs(self.vmin), np.abs(self.vmax)])
x, y = [-v_ext, self.midpoint, v_ext], [0, 0.5, 1]
return np.ma.masked_array(np.interp(value, x, y))
def postprocess(x):
return ((x + 1.0) * 127.5).squeeze().detach().cpu().numpy()
def mnist_graph(*args):
x, t, i, y = r"$\mathbf{x}$", r"$t$", r"$i$", r"$y$"
ut, ui, uy = r"$\mathbf{U}_t$", r"$\mathbf{U}_i$", r"$\mathbf{U}_y$"
zx, ex = r"$\mathbf{z}_{1:L}$", r"$\boldsymbol{\epsilon}$"
G = nx.DiGraph()
G.add_edge(t, x)
G.add_edge(i, x)
G.add_edge(y, x)
G.add_edge(t, i)
G.add_edge(ut, t)
G.add_edge(ui, i)
G.add_edge(uy, y)
G.add_edge(zx, x)
G.add_edge(ex, x)
pos = {
y: (0, 0),
uy: (-1, 0),
t: (0, 0.5),
ut: (0, 1),
x: (1, 0),
zx: (2, 0.375),
ex: (2, 0),
i: (1, 0.5),
ui: (1, 1),
}
node_c = {}
for node in G:
node_c[node] = "lightgrey" if node in [x, t, i, y] else "white"
node_line_c = {k: "black" for k, _ in node_c.items()}
edge_c = {e: "black" for e in G.edges}
if args[0]: # do_t
edge_c[(ut, t)] = "lightgrey"
# G.remove_edge(ut, t)
node_line_c[t] = "red"
if args[1]: # do_i
edge_c[(ui, i)] = "lightgrey"
edge_c[(t, i)] = "lightgrey"
# G.remove_edges_from([(ui, i), (t, i)])
node_line_c[i] = "red"
if args[2]: # do_y
edge_c[(uy, y)] = "lightgrey"
# G.remove_edge(uy, y)
node_line_c[y] = "red"
fs = 30
options = {
"font_size": fs,
"node_size": 3000,
"node_color": list(node_c.values()),
"edgecolors": list(node_line_c.values()),
"edge_color": list(edge_c.values()),
"linewidths": 2,
"width": 2,
}
plt.close("all")
fig, ax = plt.subplots(1, 1, figsize=(6, 4.1)) # , constrained_layout=True)
# fig.patch.set_visible(False)
ax.margins(x=0.06, y=0.15, tight=False)
ax.axis("off")
nx.draw_networkx(G, pos, **options, arrowsize=25, arrowstyle="-|>", ax=ax)
# need to reuse x, y limits so that the graphs plot the same way before and after removing edges
x_lim = (-1.348, 2.348)
y_lim = (-0.215, 1.215)
ax.set_xlim(x_lim)
ax.set_ylim(y_lim)
rect = patches.FancyBboxPatch(
(1.75, -0.16),
0.5,
0.7,
boxstyle="round, pad=0.05, rounding_size=0",
linewidth=2,
edgecolor="black",
facecolor="none",
linestyle="-",
)
ax.add_patch(rect)
ax.text(1.85, 0.65, r"$\mathbf{U}_{\mathbf{x}}$", fontsize=fs)
if args[0]: # do_t
fig.figimage(HAMMER, 0.26 * fig.bbox.xmax, 0.525 * fig.bbox.ymax, zorder=10)
if args[1]: # do_i
fig.figimage(HAMMER, 0.5175 * fig.bbox.xmax, 0.525 * fig.bbox.ymax, zorder=11)
if args[2]: # do_y
fig.figimage(HAMMER, 0.26 * fig.bbox.xmax, 0.2 * fig.bbox.ymax, zorder=12)
fig.tight_layout()
fig.canvas.draw()
return np.array(fig.canvas.renderer.buffer_rgba())
def brain_graph(*args):
x, m, s, a, b, v = r"$\mathbf{x}$", r"$m$", r"$s$", r"$a$", r"$b$", r"$v$"
um, us, ua, ub, uv = (
r"$\mathbf{U}_m$",
r"$\mathbf{U}_s$",
r"$\mathbf{U}_a$",
r"$\mathbf{U}_b$",
r"$\mathbf{U}_v$",
)
zx, ex = r"$\mathbf{z}_{1:L}$", r"$\boldsymbol{\epsilon}$"
G = nx.DiGraph()
G.add_edge(m, x)
G.add_edge(s, x)
G.add_edge(b, x)
G.add_edge(v, x)
G.add_edge(zx, x)
G.add_edge(ex, x)
G.add_edge(a, b)
G.add_edge(a, v)
G.add_edge(s, b)
G.add_edge(um, m)
G.add_edge(us, s)
G.add_edge(ua, a)
G.add_edge(ub, b)
G.add_edge(uv, v)
pos = {
x: (0, 0),
zx: (-0.25, -1),
ex: (0.25, -1),
a: (0, 1),
ua: (0, 2),
s: (1, 0),
us: (1, -1),
b: (1, 1),
ub: (1, 2),
m: (-1, 0),
um: (-1, -1),
v: (-1, 1),
uv: (-1, 2),
}
node_c = {}
for node in G:
node_c[node] = "lightgrey" if node in [x, m, s, a, b, v] else "white"
node_line_c = {k: "black" for k, _ in node_c.items()}
edge_c = {e: "black" for e in G.edges}
if args[0]: # do_m
# G.remove_edge(um, m)
edge_c[(um, m)] = "lightgrey"
node_line_c[m] = "red"
if args[1]: # do_s
# G.remove_edge(us, s)
edge_c[(us, s)] = "lightgrey"
node_line_c[s] = "red"
if args[2]: # do_a
# G.remove_edge(ua, a)
edge_c[(ua, a)] = "lightgrey"
node_line_c[a] = "red"
if args[3]: # do_b
# G.remove_edges_from([(ub, b), (s, b), (a, b)])
edge_c[(ub, b)] = "lightgrey"
edge_c[(s, b)] = "lightgrey"
edge_c[(a, b)] = "lightgrey"
node_line_c[b] = "red"
if args[4]: # do_v
# G.remove_edges_from([(uv, v), (a, v), (b, v)])
edge_c[(uv, v)] = "lightgrey"
edge_c[(a, v)] = "lightgrey"
edge_c[(b, v)] = "lightgrey"
node_line_c[v] = "red"
fs = 30
options = {
"font_size": fs,
"node_size": 3000,
"node_color": list(node_c.values()),
"edgecolors": list(node_line_c.values()),
"edge_color": list(edge_c.values()),
"linewidths": 2,
"width": 2,
}
plt.close("all")
fig, ax = plt.subplots(1, 1, figsize=(5, 5)) # , constrained_layout=True)
# fig.patch.set_visible(False)
ax.margins(x=0.1, y=0.08, tight=False)
ax.axis("off")
nx.draw_networkx(G, pos, **options, arrowsize=25, arrowstyle="-|>", ax=ax)
# need to reuse x, y limits so that the graphs plot the same way before and after removing edges
x_lim = (-1.32, 1.32)
y_lim = (-1.414, 2.414)
ax.set_xlim(x_lim)
ax.set_ylim(y_lim)
rect = patches.FancyBboxPatch(
(-0.5, -1.325),
1,
0.65,
boxstyle="round, pad=0.05, rounding_size=0",
linewidth=2,
edgecolor="black",
facecolor="none",
linestyle="-",
)
ax.add_patch(rect)
# ax.text(1.85, 0.65, r"$\mathbf{U}_{\mathbf{x}}$", fontsize=fs)
if args[0]: # do_m
fig.figimage(HAMMER, 0.0075 * fig.bbox.xmax, 0.395 * fig.bbox.ymax, zorder=10)
if args[1]: # do_s
fig.figimage(HAMMER, 0.72 * fig.bbox.xmax, 0.395 * fig.bbox.ymax, zorder=11)
if args[2]: # do_a
fig.figimage(HAMMER, 0.363 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=12)
if args[3]: # do_b
fig.figimage(HAMMER, 0.72 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=13)
if args[4]: # do_v
fig.figimage(HAMMER, 0.0075 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=14)
else: # b -> v
a3 = patches.FancyArrowPatch(
(0.86, 1.21),
(-0.86, 1.21),
connectionstyle="arc3,rad=.3",
linewidth=2,
arrowstyle="simple, head_width=10, head_length=10",
color="k",
)
ax.add_patch(a3)
# print(ax.get_xlim())
# print(ax.get_ylim())
fig.tight_layout()
fig.canvas.draw()
return np.array(fig.canvas.renderer.buffer_rgba())
def chest_graph(*args):
x, a, d, r, s = r"$\mathbf{x}$", r"$a$", r"$d$", r"$r$", r"$s$"
ua, ud, ur, us = (
r"$\mathbf{U}_a$",
r"$\mathbf{U}_d$",
r"$\mathbf{U}_r$",
r"$\mathbf{U}_s$",
)
zx, ex = r"$\mathbf{z}_{1:L}$", r"$\boldsymbol{\epsilon}$"
G = nx.DiGraph()
G.add_edge(ua, a)
G.add_edge(ud, d)
G.add_edge(ur, r)
G.add_edge(us, s)
G.add_edge(a, d)
G.add_edge(d, x)
G.add_edge(r, x)
G.add_edge(s, x)
G.add_edge(ex, x)
G.add_edge(zx, x)
G.add_edge(a, x)
pos = {
x: (0, 0),
a: (-1, 1),
d: (0, 1),
r: (1, 1),
s: (1, 0),
ua: (-1, 2),
ud: (0, 2),
ur: (1, 2),
us: (1, -1),
zx: (-0.25, -1),
ex: (0.25, -1),
}
node_c = {}
for node in G:
node_c[node] = "lightgrey" if node in [x, a, d, r, s] else "white"
edge_c = {e: "black" for e in G.edges}
node_line_c = {k: "black" for k, _ in node_c.items()}
if args[0]: # do_r
# G.remove_edge(ur, r)
edge_c[(ur, r)] = "lightgrey"
node_line_c[r] = "red"
if args[1]: # do_s
# G.remove_edges_from([(us, s)])
edge_c[(us, s)] = "lightgrey"
node_line_c[s] = "red"
if args[2]: # do_f (do_d)
# G.remove_edges_from([(ud, d), (a, d)])
edge_c[(ud, d)] = "lightgrey"
edge_c[(a, d)] = "lightgrey"
node_line_c[d] = "red"
if args[3]: # do_a
# G.remove_edge(ua, a)
edge_c[(ua, a)] = "lightgrey"
node_line_c[a] = "red"
fs = 30
options = {
"font_size": fs,
"node_size": 3000,
"node_color": list(node_c.values()),
"edgecolors": list(node_line_c.values()),
"edge_color": list(edge_c.values()),
"linewidths": 2,
"width": 2,
}
plt.close("all")
fig, ax = plt.subplots(1, 1, figsize=(5, 5)) # , constrained_layout=True)
# fig.patch.set_visible(False)
ax.margins(x=0.1, y=0.08, tight=False)
ax.axis("off")
nx.draw_networkx(G, pos, **options, arrowsize=25, arrowstyle="-|>", ax=ax)
# need to reuse x, y limits so that the graphs plot the same way before and after removing edges
x_lim = (-1.32, 1.32)
y_lim = (-1.414, 2.414)
ax.set_xlim(x_lim)
ax.set_ylim(y_lim)
rect = patches.FancyBboxPatch(
(-0.5, -1.325),
1,
0.65,
boxstyle="round, pad=0.05, rounding_size=0",
linewidth=2,
edgecolor="black",
facecolor="none",
linestyle="-",
)
ax.add_patch(rect)
ax.text(-0.9, -1.075, r"$\mathbf{U}_{\mathbf{x}}$", fontsize=fs)
if args[0]: # do_r
fig.figimage(HAMMER, 0.72 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=10)
if args[1]: # do_s
fig.figimage(HAMMER, 0.72 * fig.bbox.xmax, 0.395 * fig.bbox.ymax, zorder=11)
if args[2]: # do_f
fig.figimage(HAMMER, 0.363 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=12)
if args[3]: # do_a
fig.figimage(HAMMER, 0.0075 * fig.bbox.xmax, 0.64 * fig.bbox.ymax, zorder=13)
fig.tight_layout()
fig.canvas.draw()
return np.array(fig.canvas.renderer.buffer_rgba())
def vae_preprocess(args, pa):
if "ukbb" in args.hps:
# preprocessing ukbb parents for the vae which was originally trained using
# log standardized parents. The pgm was trained using [-1,1] normalization
# first undo [-1,1] parent preprocessing back to original range
for k, v in pa.items():
if k != "mri_seq" and k != "sex":
pa[k] = (v + 1) / 2 # [-1,1] -> [0,1]
_max, _min = get_attr_max_min(k)
pa[k] = pa[k] * (_max - _min) + _min
# log_standardize parents for vae input
for k, v in pa.items():
logpa_k = torch.log(v.clamp(min=1e-12))
if k == "age":
pa[k] = (logpa_k - 4.112339973449707) / 0.11769197136163712
elif k == "brain_volume":
pa[k] = (logpa_k - 13.965583801269531) / 0.09537758678197861
elif k == "ventricle_volume":
pa[k] = (logpa_k - 10.345998764038086) / 0.43127763271331787
# concatenate parents expand to input res for conditioning the vae
pa = torch.cat(
[pa[k] if len(pa[k].shape) > 1 else pa[k][..., None] for k in args.parents_x],
dim=1,
)
pa = (
pa[..., None, None].repeat(1, 1, *(args.input_res,) * 2).to(args.device).float()
)
return pa
def preprocess_brain(args, obs):
obs["x"] = (obs["x"][None, ...].float().to(args.device) - 127.5) / 127.5 # [-1,1]
# for all other variables except x
for k in [k for k in obs.keys() if k != "x"]:
obs[k] = obs[k].float().to(args.device).view(1, 1)
if k in ["age", "brain_volume", "ventricle_volume"]:
k_max, k_min = get_attr_max_min(k)
obs[k] = (obs[k] - k_min) / (k_max - k_min) # [0,1]
obs[k] = 2 * obs[k] - 1 # [-1,1]
return obs
def get_fig_arr(x, width=4, height=4, dpi=144, cmap="Greys_r", norm=None):
fig = plt.figure(figsize=(width, height), dpi=dpi)
ax = plt.axes([0, 0, 1, 1], frameon=False)
if cmap == "Greys_r":
ax.imshow(x, cmap=cmap, vmin=0, vmax=255)
else:
ax.imshow(x, cmap=cmap, norm=norm)
ax.axis("off")
fig.canvas.draw()
return np.array(fig.canvas.renderer.buffer_rgba())
def normalize(x, x_min=None, x_max=None, zero_one=False):
if x_min is None:
x_min = x.min()
if x_max is None:
x_max = x.max()
x = (x - x_min) / (x_max - x_min) # [0,1]
return x if zero_one else 2 * x - 1 # else [-1,1]
|