Spaces:
Sleeping
Sleeping
File size: 13,298 Bytes
8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea 8c4fe8b 146a6ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import os
import gzip
import struct
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as TF
import torch.nn.functional as F
from tqdm import tqdm
from torch.utils.data import Dataset
from typing import Tuple
from PIL import Image
from skimage.io import imread
def log_standardize(x):
log_x = torch.log(x.clamp(min=1e-12))
return (log_x - log_x.mean()) / log_x.std().clamp(min=1e-12) # mean=0, std=1
def normalize(x, x_min=None, x_max=None, zero_one=False):
if x_min is None:
x_min = x.min()
if x_max is None:
x_max = x.max()
print(f"max: {x_max}, min: {x_min}")
x = (x - x_min) / (x_max - x_min) # [0,1]
return x if zero_one else 2 * x - 1 # else [-1,1]
class UKBBDataset(Dataset):
def __init__(
self, root, csv_file, transform=None, columns=None, norm=None, concat_pa=True
):
super().__init__()
self.root = root
self.transform = transform
self.concat_pa = concat_pa # return concatenated parents
print(f"\nLoading csv data: {csv_file}")
self.df = pd.read_csv(csv_file)
self.columns = columns
if self.columns is None:
# ['eid', 'sex', 'age', 'brain_volume', 'ventricle_volume', 'mri_seq']
self.columns = list(self.df.columns) # return all
self.columns.pop(0) # remove redundant 'index' column
print(f"columns: {self.columns}")
self.samples = {i: torch.as_tensor(self.df[i]).float() for i in self.columns}
for k in ["age", "brain_volume", "ventricle_volume"]:
print(f"{k} normalization: {norm}")
if k in self.columns:
if norm == "[-1,1]":
self.samples[k] = normalize(self.samples[k])
elif norm == "[0,1]":
self.samples[k] = normalize(self.samples[k], zero_one=True)
elif norm == "log_standard":
self.samples[k] = log_standardize(self.samples[k])
elif norm == None:
pass
else:
NotImplementedError(f"{norm} not implemented.")
print(f"#samples: {len(self.df)}")
self.return_x = True if "eid" in self.columns else False
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
sample = {k: v[idx] for k, v in self.samples.items()}
if self.return_x:
mri_seq = "T1" if sample["mri_seq"] == 0.0 else "T2_FLAIR"
# Load scan
filename = (
f'{int(sample["eid"])}_' + mri_seq + "_unbiased_brain_rigid_to_mni.png"
)
x = Image.open(os.path.join(self.root, "thumbs_192x192", filename))
if self.transform is not None:
sample["x"] = self.transform(x)
sample.pop("eid", None)
if self.concat_pa:
sample["pa"] = torch.cat(
[torch.tensor([sample[k]]) for k in self.columns if k != "eid"], dim=0
)
return sample
def get_attr_max_min(attr):
# some ukbb dataset (max, min) stats
if attr == "age":
return 73, 44
elif attr == "brain_volume":
return 1629520, 841919
elif attr == "ventricle_volume":
return 157075, 7613.27001953125
else:
NotImplementedError
def ukbb(args):
csv_dir = args.data_dir
augmentation = {
"train": TF.Compose(
[
TF.Resize((args.input_res, args.input_res), antialias=None),
TF.RandomCrop(
size=(args.input_res, args.input_res),
padding=[2 * args.pad, args.pad],
),
TF.RandomHorizontalFlip(p=args.hflip),
TF.PILToTensor(),
]
),
"eval": TF.Compose(
[
TF.Resize((args.input_res, args.input_res), antialias=None),
TF.PILToTensor(),
]
),
}
datasets = {}
# for split in ['train', 'valid', 'test']:
for split in ["test"]:
datasets[split] = UKBBDataset(
root=args.data_dir,
csv_file=os.path.join(csv_dir, split + ".csv"),
transform=augmentation[("eval" if split != "train" else split)],
columns=(None if not args.parents_x else ["eid"] + args.parents_x),
norm=(None if not hasattr(args, "context_norm") else args.context_norm),
concat_pa=False,
)
return datasets
def _load_uint8(f):
idx_dtype, ndim = struct.unpack("BBBB", f.read(4))[2:]
shape = struct.unpack(">" + "I" * ndim, f.read(4 * ndim))
buffer_length = int(np.prod(shape))
data = np.frombuffer(f.read(buffer_length), dtype=np.uint8).reshape(shape)
return data
def load_idx(path: str) -> np.ndarray:
"""Reads an array in IDX format from disk.
Parameters
----------
path : str
Path of the input file. Will uncompress with `gzip` if path ends in '.gz'.
Returns
-------
np.ndarray
Output array of dtype ``uint8``.
References
----------
http://yann.lecun.com/exdb/mnist/
"""
open_fcn = gzip.open if path.endswith(".gz") else open
with open_fcn(path, "rb") as f:
return _load_uint8(f)
def _get_paths(root_dir, train):
prefix = "train" if train else "t10k"
images_filename = prefix + "-images-idx3-ubyte.gz"
labels_filename = prefix + "-labels-idx1-ubyte.gz"
metrics_filename = prefix + "-morpho.csv"
images_path = os.path.join(root_dir, images_filename)
labels_path = os.path.join(root_dir, labels_filename)
metrics_path = os.path.join(root_dir, metrics_filename)
return images_path, labels_path, metrics_path
def load_morphomnist_like(
root_dir, train: bool = True, columns=None
) -> Tuple[np.ndarray, np.ndarray, pd.DataFrame]:
"""
Args:
root_dir: path to data directory
train: whether to load the training subset (``True``, ``'train-*'`` files) or the test
subset (``False``, ``'t10k-*'`` files)
columns: list of morphometrics to load; by default (``None``) loads the image index and
all available metrics: area, length, thickness, slant, width, and height
Returns:
images, labels, metrics
"""
images_path, labels_path, metrics_path = _get_paths(root_dir, train)
images = load_idx(images_path)
labels = load_idx(labels_path)
if columns is not None and "index" not in columns:
usecols = ["index"] + list(columns)
else:
usecols = columns
metrics = pd.read_csv(metrics_path, usecols=usecols, index_col="index")
return images, labels, metrics
class MorphoMNIST(Dataset):
def __init__(
self,
root_dir,
train=True,
transform=None,
columns=None,
norm=None,
concat_pa=True,
):
self.train = train
self.transform = transform
self.columns = columns
self.concat_pa = concat_pa
self.norm = norm
cols_not_digit = [c for c in self.columns if c != "digit"]
images, labels, metrics_df = load_morphomnist_like(
root_dir, train, cols_not_digit
)
self.images = torch.from_numpy(np.array(images)).unsqueeze(1)
self.labels = F.one_hot(
torch.from_numpy(np.array(labels)).long(), num_classes=10
)
if self.columns is None:
self.columns = metrics_df.columns
self.samples = {k: torch.tensor(metrics_df[k]) for k in cols_not_digit}
self.min_max = {
"thickness": [0.87598526, 6.255515],
"intensity": [66.601204, 254.90317],
}
for k, v in self.samples.items(): # optional preprocessing
print(f"{k} normalization: {norm}")
if norm == "[-1,1]":
self.samples[k] = normalize(
v, x_min=self.min_max[k][0], x_max=self.min_max[k][1]
)
elif norm == "[0,1]":
self.samples[k] = normalize(
v, x_min=self.min_max[k][0], x_max=self.min_max[k][1], zero_one=True
)
elif norm == None:
pass
else:
NotImplementedError(f"{norm} not implemented.")
print(f"#samples: {len(metrics_df)}\n")
self.samples.update({"digit": self.labels})
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
sample = {}
sample["x"] = self.images[idx]
if self.transform is not None:
sample["x"] = self.transform(sample["x"])
if self.concat_pa:
sample["pa"] = torch.cat(
[
v[idx] if k == "digit" else torch.tensor([v[idx]])
for k, v in self.samples.items()
],
dim=0,
)
else:
sample.update({k: v[idx] for k, v in self.samples.items()})
return sample
def morphomnist(args):
# Load data
augmentation = {
"train": TF.Compose(
[
TF.RandomCrop((args.input_res, args.input_res), padding=args.pad),
]
),
"eval": TF.Compose(
[
TF.Pad(padding=2), # (32, 32)
]
),
}
datasets = {}
# for split in ['train', 'valid', 'test']:
for split in ["test"]:
datasets[split] = MorphoMNIST(
root_dir=args.data_dir,
train=(split == "train"), # test set is valid set
transform=augmentation[("eval" if split != "train" else split)],
columns=args.parents_x,
norm=args.context_norm,
concat_pa=False,
)
return datasets
def preproc_mimic(batch):
for k, v in batch.items():
if k == "x":
batch["x"] = (batch["x"].float() - 127.5) / 127.5 # [-1,1]
elif k in ["age"]:
batch[k] = batch[k].float().unsqueeze(-1)
batch[k] = batch[k] / 100.0
batch[k] = batch[k] * 2 - 1 # [-1,1]
elif k in ["race"]:
batch[k] = F.one_hot(batch[k], num_classes=3).squeeze().float()
elif k in ["finding"]:
batch[k] = batch[k].unsqueeze(-1).float()
else:
batch[k] = batch[k].float().unsqueeze(-1)
return batch
class MIMICDataset(Dataset):
def __init__(
self,
root,
csv_file,
transform=None,
columns=None,
concat_pa=True,
only_pleural_eff=True,
):
self.data = pd.read_csv(csv_file)
self.transform = transform
self.disease_labels = [
"No Finding",
"Other",
"Pleural Effusion",
# "Lung Opacity",
]
self.samples = {
"age": [],
"sex": [],
"finding": [],
"x": [],
"race": [],
# "lung_opacity": [],
# "pleural_effusion": [],
}
for idx, _ in enumerate(tqdm(range(len(self.data)), desc="Loading MIMIC Data")):
if only_pleural_eff and self.data.loc[idx, "disease"] == "Other":
continue
img_path = os.path.join(root, self.data.loc[idx, "path_preproc"])
# lung_opacity = self.data.loc[idx, "Lung Opacity"]
# self.samples["lung_opacity"].append(lung_opacity)
# pleural_effusion = self.data.loc[idx, "Pleural Effusion"]
# self.samples["pleural_effusion"].append(pleural_effusion)
disease = self.data.loc[idx, "disease"]
finding = 0 if disease == "No Finding" else 1
self.samples["x"].append(img_path)
self.samples["finding"].append(finding)
self.samples["age"].append(self.data.loc[idx, "age"])
self.samples["race"].append(self.data.loc[idx, "race_label"])
self.samples["sex"].append(self.data.loc[idx, "sex_label"])
self.columns = columns
if self.columns is None:
# ['age', 'race', 'sex']
self.columns = list(self.data.columns) # return all
self.columns.pop(0) # remove redundant 'index' column
self.concat_pa = concat_pa
def __len__(self):
return len(self.samples["x"])
def __getitem__(self, idx):
sample = {k: v[idx] for k, v in self.samples.items()}
sample["x"] = imread(sample["x"]).astype(np.float32)[None, ...]
for k, v in sample.items():
sample[k] = torch.tensor(v)
if self.transform:
sample["x"] = self.transform(sample["x"])
sample = preproc_mimic(sample)
if self.concat_pa:
sample["pa"] = torch.cat([sample[k] for k in self.columns], dim=0)
return sample
def mimic(args):
args.csv_dir = args.data_dir
datasets = {}
datasets["test"] = MIMICDataset(
root=args.data_dir,
csv_file=os.path.join(args.csv_dir, "mimic.sample.test.csv"),
columns=args.parents_x,
transform=TF.Compose(
[
TF.Resize((args.input_res, args.input_res), antialias=None),
]
),
concat_pa=False,
)
return datasets
|