File size: 20,563 Bytes
8c4fe8b
 
 
 
 
 
 
 
146a6ea
8c4fe8b
 
146a6ea
 
 
 
 
 
 
 
8c4fe8b
 
 
 
 
 
 
 
146a6ea
 
 
 
 
 
 
 
 
 
8c4fe8b
 
 
 
 
146a6ea
8c4fe8b
 
 
 
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146a6ea
 
 
8c4fe8b
 
 
146a6ea
 
 
 
 
 
 
 
 
8c4fe8b
 
146a6ea
 
 
 
 
 
 
8c4fe8b
 
146a6ea
 
8c4fe8b
 
146a6ea
8c4fe8b
146a6ea
 
 
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
146a6ea
 
 
 
 
 
 
 
8c4fe8b
146a6ea
 
 
 
 
 
 
 
8c4fe8b
146a6ea
 
 
8c4fe8b
 
 
 
 
146a6ea
 
 
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146a6ea
 
 
8c4fe8b
 
 
146a6ea
8c4fe8b
 
 
 
146a6ea
8c4fe8b
 
 
146a6ea
 
 
8c4fe8b
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146a6ea
 
 
8c4fe8b
146a6ea
8c4fe8b
146a6ea
8c4fe8b
 
 
 
 
146a6ea
8c4fe8b
 
 
 
 
146a6ea
 
8c4fe8b
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146a6ea
8c4fe8b
146a6ea
8c4fe8b
 
 
146a6ea
 
 
 
 
8c4fe8b
 
 
 
 
 
 
 
 
146a6ea
 
 
8c4fe8b
 
 
 
 
 
 
146a6ea
 
 
8c4fe8b
 
 
 
 
 
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
146a6ea
 
8c4fe8b
146a6ea
 
8c4fe8b
 
146a6ea
8c4fe8b
 
 
 
 
146a6ea
 
8c4fe8b
 
146a6ea
8c4fe8b
 
146a6ea
8c4fe8b
 
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146a6ea
 
 
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146a6ea
 
 
8c4fe8b
146a6ea
8c4fe8b
 
 
 
 
 
 
146a6ea
8c4fe8b
 
 
 
 
 
146a6ea
8c4fe8b
 
146a6ea
8c4fe8b
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
146a6ea
8c4fe8b
 
 
 
146a6ea
8c4fe8b
 
 
 
 
 
 
 
 
 
 
146a6ea
 
 
8c4fe8b
 
146a6ea
 
8c4fe8b
 
 
 
 
 
146a6ea
 
8c4fe8b
146a6ea
8c4fe8b
146a6ea
 
8c4fe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributions as dist

EPS = -9  # minimum logscale


@torch.jit.script
def gaussian_kl(q_loc, q_logscale, p_loc, p_logscale):
    return (
        -0.5
        + p_logscale
        - q_logscale
        + 0.5
        * (q_logscale.exp().pow(2) + (q_loc - p_loc).pow(2))
        / p_logscale.exp().pow(2)
    )


@torch.jit.script
def sample_gaussian(loc, logscale):
    return loc + logscale.exp() * torch.randn_like(loc)


class Block(nn.Module):
    def __init__(
        self,
        in_width,
        bottleneck,
        out_width,
        kernel_size=3,
        residual=True,
        down_rate=None,
        version=None,
    ):
        super().__init__()
        self.d = down_rate
        self.residual = residual
        padding = 0 if kernel_size == 1 else 1

        if version == "light":  # for ukbb
            activation = nn.ReLU()
            self.conv = nn.Sequential(
                activation,
                nn.Conv2d(in_width, bottleneck, kernel_size, 1, padding),
                activation,
                nn.Conv2d(bottleneck, out_width, kernel_size, 1, padding),
            )
        else:  # for morphomnist
            activation = nn.GELU()
            self.conv = nn.Sequential(
                activation,
                nn.Conv2d(in_width, bottleneck, 1, 1),
                activation,
                nn.Conv2d(bottleneck, bottleneck, kernel_size, 1, padding),
                activation,
                nn.Conv2d(bottleneck, bottleneck, kernel_size, 1, padding),
                activation,
                nn.Conv2d(bottleneck, out_width, 1, 1),
            )

        if self.residual and (self.d or in_width > out_width):
            self.width_proj = nn.Conv2d(in_width, out_width, 1, 1)

    def forward(self, x):
        out = self.conv(x)
        if self.residual:
            if x.shape[1] != out.shape[1]:
                x = self.width_proj(x)
            out = x + out
        if self.d:
            if isinstance(self.d, float):
                out = F.adaptive_avg_pool2d(out, int(out.shape[-1] / self.d))
            else:
                out = F.avg_pool2d(out, kernel_size=self.d, stride=self.d)
        return out


class Encoder(nn.Module):
    def __init__(self, args):
        super().__init__()
        # parse architecture
        stages = []
        for i, stage in enumerate(args.enc_arch.split(",")):
            start = stage.index("b") + 1
            end = stage.index("d") if "d" in stage else None
            n_blocks = int(stage[start:end])

            if i == 0:  # define network stem
                if n_blocks == 0 and "d" not in stage:
                    print("Using stride=2 conv encoder stem.")
                    self.stem = nn.Conv2d(
                        args.input_channels,
                        args.widths[1],
                        kernel_size=7,
                        stride=2,
                        padding=3,
                    )
                    continue
                else:
                    self.stem = nn.Conv2d(
                        args.input_channels,
                        args.widths[0],
                        kernel_size=7,
                        stride=1,
                        padding=3,
                    )

            stages += [(args.widths[i], None) for _ in range(n_blocks)]
            if "d" in stage:  # downsampling block
                stages += [(args.widths[i + 1], int(stage[stage.index("d") + 1]))]
        blocks = []
        for i, (width, d) in enumerate(stages):
            prev_width = stages[max(0, i - 1)][0]
            bottleneck = int(prev_width / args.bottleneck)
            blocks.append(
                Block(prev_width, bottleneck, width, down_rate=d, version=args.vr)
            )
        # scale weights of last conv layer in each block
        for b in blocks:
            b.conv[-1].weight.data *= np.sqrt(1 / len(blocks))
        self.blocks = nn.ModuleList(blocks)

    def forward(self, x):
        x = self.stem(x)
        acts = {}
        for block in self.blocks:
            x = block(x)
            res = x.shape[2]
            if res % 2 and res > 1:  # pad if odd resolution
                x = F.pad(x, [0, 1, 0, 1])
            acts[x.size(-1)] = x
        return acts


class DecoderBlock(nn.Module):
    def __init__(self, args, in_width, out_width, resolution):
        super().__init__()
        bottleneck = int(in_width / args.bottleneck)
        self.res = resolution
        self.stochastic = self.res <= args.z_max_res
        self.z_dim = args.z_dim
        self.cond_prior = args.cond_prior
        k = 3 if self.res > 2 else 1

        if self.cond_prior:  # conditional prior
            p_in_width = in_width + args.context_dim
        else:  # exogenous prior
            p_in_width = in_width
            # self.z_feat_proj = nn.Conv2d(self.z_dim + in_width, out_width, 1)
        self.z_feat_proj = nn.Conv2d(self.z_dim + in_width, out_width, 1)

        self.prior = Block(
            p_in_width,
            bottleneck,
            2 * self.z_dim + in_width,
            kernel_size=k,
            residual=False,
            version=args.vr,
        )
        if self.stochastic:
            self.posterior = Block(
                2 * in_width + args.context_dim,
                bottleneck,
                2 * self.z_dim,
                kernel_size=k,
                residual=False,
                version=args.vr,
            )
        self.z_proj = nn.Conv2d(self.z_dim + args.context_dim, in_width, 1)
        self.conv = Block(
            in_width, bottleneck, out_width, kernel_size=k, version=args.vr
        )

    def forward_prior(self, z, pa=None, t=None):
        if self.cond_prior:
            z = torch.cat([z, pa], dim=1)
        z = self.prior(z)
        p_loc = z[:, : self.z_dim, ...]
        p_logscale = z[:, self.z_dim : 2 * self.z_dim, ...]
        p_features = z[:, 2 * self.z_dim :, ...]
        if t is not None:
            p_logscale = p_logscale + torch.tensor(t).to(z.device).log()
        return p_loc, p_logscale, p_features

    def forward_posterior(self, z, pa, x, t=None):
        h = torch.cat([z, pa, x], dim=1)
        q_loc, q_logscale = self.posterior(h).chunk(2, dim=1)
        if t is not None:
            q_logscale = q_logscale + torch.tensor(t).to(z.device).log()
        return q_loc, q_logscale


class Decoder(nn.Module):
    def __init__(self, args):
        super().__init__()
        # parse architecture
        stages = []
        for i, stage in enumerate(args.dec_arch.split(",")):
            res = int(stage.split("b")[0])
            n_blocks = int(stage[stage.index("b") + 1 :])
            stages += [(res, args.widths[::-1][i]) for _ in range(n_blocks)]
        self.blocks = []
        for i, (res, width) in enumerate(stages):
            next_width = stages[min(len(stages) - 1, i + 1)][1]
            self.blocks.append(DecoderBlock(args, width, next_width, res))
        self._scale_weights()
        self.blocks = nn.ModuleList(self.blocks)
        # bias params
        self.all_res = list(np.unique([stages[i][0] for i in range(len(stages))]))
        bias = []
        for i, res in enumerate(self.all_res):
            if res <= args.bias_max_res:
                bias.append(
                    nn.Parameter(torch.zeros(1, args.widths[::-1][i], res, res))
                )
        self.bias = nn.ParameterList(bias)
        self.cond_prior = args.cond_prior
        self.is_drop_cond = True if "mnist" in args.hps else False  # hacky

    def _scale_weights(self):
        scale = np.sqrt(1 / len(self.blocks))
        for b in self.blocks:
            b.z_proj.weight.data *= scale
            b.conv.conv[-1].weight.data *= scale
            b.prior.conv[-1].weight.data *= 0.0

    def forward(self, parents, x=None, t=None, abduct=False, latents=[]):
        # learnt params for each resolution r
        bias = {r.shape[2]: r for r in self.bias}
        h = bias[1].repeat(parents.shape[0], 1, 1, 1)  # h_init
        z = h  # for exogenous prior
        # for conditioning dropout, stochastic path (p1), deterministic path (p2)
        p1, p2 = self.drop_cond() if (self.training and self.cond_prior) else (1, 1)

        stats = []
        for i, block in enumerate(self.blocks):
            res = block.res  # current block resolution, e.g. 64x64
            pa = parents[..., :res, :res].clone()  # select parents @ res

            if (
                self.is_drop_cond
            ):  # for morphomnist w/ conditioning dropout. Hacky, clean up later
                pa_drop1 = pa.clone()
                pa_drop1[:, 2:, ...] = pa_drop1[:, 2:, ...] * p1
                pa_drop2 = pa.clone()
                pa_drop2[:, 2:, ...] = pa_drop2[:, 2:, ...] * p2
            else:  # for ukbb
                pa_drop1 = pa_drop2 = pa

            if h.size(-1) < res:  # upsample previous layer output
                b = bias[res] if res in bias.keys() else 0  # broadcasting
                h = b + F.interpolate(h, scale_factor=res / h.shape[-1])

            if block.cond_prior:  # conditional prior: p(z_i | z_<i, pa_x)
                # w/ posterior correction
                # p_loc, p_logscale, p_feat = block.forward_prior(h, pa_drop1, t=t)
                if z.size(-1) < res:  # w/o posterior correction
                    z = b + F.interpolate(z, scale_factor=res / z.shape[-1])
                p_loc, p_logscale, p_feat = block.forward_prior(z, pa_drop1, t=t)
            else:  # exogenous prior: p(z_i | z_<i)
                if z.size(-1) < res:
                    z = b + F.interpolate(z, scale_factor=res / z.shape[-1])
                p_loc, p_logscale, p_feat = block.forward_prior(z, t=t)

            # computation tree:
            #                     decoder block
            #                  /                 \
            #     deterministic                   stochastic
            #          |                         /          \
            #   forward z = p_loc         given x            not given x
            #                           /                  /            \
            #                     abduct          forward z or z*     z ~ prior
            #                    /      \                                |
            # (prior:   conditional    exogenous)            get p(z|pa*) if abduct
            #              get z*         get z
            #

            if block.stochastic:
                if x is not None:  # z_i ~ q(z_i | z_<i, pa_x, x)
                    q_loc, q_logscale = block.forward_posterior(h, pa, x[res], t=t)
                    z = sample_gaussian(q_loc, q_logscale)
                    stat = dict(kl=gaussian_kl(q_loc, q_logscale, p_loc, p_logscale))
                    # abduct exogenous noise
                    if abduct:
                        if block.cond_prior:  # z* if conditional prior
                            stat.update(
                                dict(
                                    z={"z": z, "q_loc": q_loc, "q_logscale": q_logscale}
                                )
                            )
                        else:  # z if exogenous prior
                            # stat.update(dict(z=z.detach()))
                            stat.update(dict(z=z))  # if cf training
                    stats.append(stat)
                else:
                    if latents[i] is None:
                        z = sample_gaussian(p_loc, p_logscale)

                        if abduct and block.cond_prior:  # for abducting z*
                            stats.append(
                                dict(z={"p_loc": p_loc, "p_logscale": p_logscale})
                            )
                    else:
                        try:  # forward fixed latents z or z*
                            z = latents[i]
                        except:  # sample prior
                            z = sample_gaussian(p_loc, p_logscale)

                            if abduct and block.cond_prior:  # for abducting z*
                                stats.append(
                                    dict(z={"p_loc": p_loc, "p_logscale": p_logscale})
                                )
            else:
                z = p_loc  # deterministic path

            h = h + p_feat  # merge prior features
            h = self.forward_merge(block, h, z, pa_drop2)

            # if not block.cond_prior:
            if (i + 1) < len(self.blocks):
                # z independent of pa_x for next layer prior
                z = block.z_feat_proj(torch.cat([z, p_feat], dim=1))
        return h, stats

    def forward_merge(self, block, h, z, pa):
        # h_i = h_<i + f(z_i, pa_x)
        h = h + block.z_proj(torch.cat([z, pa], dim=1))
        return block.conv(h)

    def drop_cond(self):
        opt = dist.Categorical(1 / 3 * torch.ones(3)).sample()
        if opt == 0:  # drop stochastic path
            p1, p2 = 0, 1
        elif opt == 1:  # drop deterministic path
            p1, p2 = 1, 0
        elif opt == 2:  # keep both
            p1, p2 = 1, 1
        return p1, p2


class DGaussNet(nn.Module):
    def __init__(self, args):
        super(DGaussNet, self).__init__()
        self.x_loc = nn.Conv2d(
            args.widths[0], args.input_channels, kernel_size=1, stride=1
        )
        self.x_logscale = nn.Conv2d(
            args.widths[0], args.input_channels, kernel_size=1, stride=1
        )

        if args.input_channels == 3:
            self.channel_coeffs = nn.Conv2d(args.widths[0], 3, kernel_size=1, stride=1)

        if args.std_init > 0:  # if std_init=0, random init weights for diag cov
            nn.init.zeros_(self.x_logscale.weight)
            nn.init.constant_(self.x_logscale.bias, np.log(args.std_init))

            covariance = args.x_like.split("_")[0]
            if covariance == "fixed":
                self.x_logscale.weight.requires_grad = False
                self.x_logscale.bias.requires_grad = False
            elif covariance == "shared":
                self.x_logscale.weight.requires_grad = False
                self.x_logscale.bias.requires_grad = True
            elif covariance == "diag":
                self.x_logscale.weight.requires_grad = True
                self.x_logscale.bias.requires_grad = True
            else:
                NotImplementedError(f"{args.x_like} not implemented.")

    def forward(self, h, x=None, t=None):
        loc, logscale = self.x_loc(h), self.x_logscale(h).clamp(min=EPS)

        # for RGB inputs
        # if hasattr(self, 'channel_coeffs'):
        #     coeff = torch.tanh(self.channel_coeffs(h))
        #     if x is None:  # inference
        #         # loc = loc + logscale.exp() * torch.randn_like(loc)  # random sampling
        #         f = lambda x: torch.clamp(x, min=-1, max=1)
        #         loc_red = f(loc[:,0,...])
        #         loc_green = f(loc[:,1,...] + coeff[:,0,...] * loc_red)
        #         loc_blue = f(loc[:,2,...] + coeff[:,1,...] * loc_red + coeff[:,2,...] * loc_green)
        #     else:  # training
        #         loc_red = loc[:,0,...]
        #         loc_green = loc[:,1,...] + coeff[:,0,...] * x[:,0,...]
        #         loc_blue = loc[:,2,...] + coeff[:,1,...] * x[:,0,...] + coeff[:,2,...] * x[:,1,...]

        #     loc = torch.cat([loc_red.unsqueeze(1),
        #         loc_green.unsqueeze(1), loc_blue.unsqueeze(1)], dim=1)

        if t is not None:
            logscale = logscale + torch.tensor(t).to(h.device).log()
        return loc, logscale

    def approx_cdf(self, x):
        return 0.5 * (
            1.0 + torch.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * torch.pow(x, 3)))
        )

    def nll(self, h, x):
        loc, logscale = self.forward(h, x)
        centered_x = x - loc
        inv_stdv = torch.exp(-logscale)
        plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
        cdf_plus = self.approx_cdf(plus_in)
        min_in = inv_stdv * (centered_x - 1.0 / 255.0)
        cdf_min = self.approx_cdf(min_in)
        log_cdf_plus = torch.log(cdf_plus.clamp(min=1e-12))
        log_one_minus_cdf_min = torch.log((1.0 - cdf_min).clamp(min=1e-12))
        cdf_delta = cdf_plus - cdf_min
        log_probs = torch.where(
            x < -0.999,
            log_cdf_plus,
            torch.where(
                x > 0.999, log_one_minus_cdf_min, torch.log(cdf_delta.clamp(min=1e-12))
            ),
        )
        return -1.0 * log_probs.mean(dim=(1, 2, 3))

    def sample(self, h, return_loc=True, t=None):
        if return_loc:
            x, logscale = self.forward(h)
        else:
            loc, logscale = self.forward(h, t)
            x = loc + torch.exp(logscale) * torch.randn_like(loc)
        x = torch.clamp(x, min=-1.0, max=1.0)
        return x, logscale.exp()


class HVAE(nn.Module):
    def __init__(self, args):
        super().__init__()
        args.vr = "light" if "ukbb" in args.hps else None  # hacky
        self.encoder = Encoder(args)
        self.decoder = Decoder(args)
        if args.x_like.split("_")[1] == "dgauss":
            self.likelihood = DGaussNet(args)
        else:
            NotImplementedError(f"{args.x_like} not implemented.")
        self.cond_prior = args.cond_prior
        self.free_bits = args.kl_free_bits

    def forward(self, x, parents, beta=1):
        acts = self.encoder(x)
        h, stats = self.decoder(parents=parents, x=acts)
        nll_pp = self.likelihood.nll(h, x)
        if self.free_bits > 0:
            free_bits = torch.tensor(self.free_bits).type_as(nll_pp)
            kl_pp = 0.0
            for stat in stats:
                kl_pp += torch.maximum(
                    free_bits, stat["kl"].sum(dim=(2, 3)).mean(dim=0)
                ).sum()
        else:
            kl_pp = torch.zeros_like(nll_pp)
            for i, stat in enumerate(stats):
                kl_pp += stat["kl"].sum(dim=(1, 2, 3))
        kl_pp = kl_pp / np.prod(x.shape[1:])  # per pixel
        elbo = nll_pp.mean() + beta * kl_pp.mean()  # negative elbo (free energy)
        return dict(elbo=elbo, nll=nll_pp.mean(), kl=kl_pp.mean())

    def sample(self, parents, return_loc=True, t=None):
        h, _ = self.decoder(parents=parents, t=t)
        return self.likelihood.sample(h, return_loc, t=t)

    def abduct(self, x, parents, cf_parents=None, alpha=0.5, t=None):
        acts = self.encoder(x)
        _, q_stats = self.decoder(
            x=acts, parents=parents, abduct=True, t=t
        )  # q(z|x,pa)
        q_stats = [s["z"] for s in q_stats]

        if self.cond_prior and cf_parents is not None:
            _, p_stats = self.decoder(parents=cf_parents, abduct=True, t=t)  # p(z|pa*)
            p_stats = [s["z"] for s in p_stats]

            cf_zs = []
            t = torch.tensor(t).to(x.device)  # z* sampling temperature

            for i in range(len(q_stats)):
                # from z_i ~ q(z_i | z_{<i}, x, pa)
                q_loc = q_stats[i]["q_loc"]
                q_scale = q_stats[i]["q_logscale"].exp()
                # abduct exogenouse noise u ~ N(0,I)
                u = (q_stats[i]["z"] - q_loc) / q_scale
                # p(z_i | z_{<i}, pa*)
                p_loc = p_stats[i]["p_loc"]
                p_var = p_stats[i]["p_logscale"].exp().pow(2)

                # Option1: mixture distribution: r(z_i | z_{<i}, x, pa, pa*)
                #   = a*q(z_i | z_{<i}, x, pa) + (1-a)*p(z_i | z_{<i}, pa*)
                r_loc = alpha * q_loc + (1 - alpha) * p_loc
                # assumes independence
                r_var = alpha * q_scale.pow(2) + (1 - alpha) * p_var
                # r_var = a*(q_loc.pow(2) + q_var) + (1-a)*(p_loc.pow(2) + p_var) - r_loc.pow(2)

                # # Option 2: precision weighted distribution
                # q_prec = 1 / q_scale.pow(2)
                # p_prec = 1 / p_var
                # joint_prec = q_prec + p_prec
                # r_loc = (q_loc * q_prec + p_loc * p_prec) / joint_prec
                # r_var = 1 / joint_prec

                # sample: z_i* ~ r(z_i | z_{<i}, x, pa, pa*)
                r_scale = r_var.sqrt()
                r_scale = r_scale * t if t is not None else r_scale
                cf_zs.append(r_loc + r_scale * u)
            return cf_zs
        else:
            return q_stats  # zs

    def forward_latents(self, latents, parents, t=None):
        h, _ = self.decoder(latents=latents, parents=parents, t=t)
        return self.likelihood.sample(h, t=t)