Kazel
commited on
Commit
·
d9fa664
1
Parent(s):
d8688d6
change
Browse files- .env +8 -0
- app.py +88 -49
- colpali_manager.py +36 -26
- milvus_manager.py +16 -7
- rag.py +25 -8
- requirements.txt +14 -8
.env
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
colpali='vidore/colpali-v1.3'
|
2 |
+
ollama='minicpm-v'
|
3 |
+
flashattn='1'
|
4 |
+
metrictype='IP'
|
5 |
+
mnum='16'
|
6 |
+
efnum='500'
|
7 |
+
topk='50'
|
8 |
+
temperature='0.8'
|
app.py
CHANGED
@@ -11,10 +11,23 @@ from rag import Rag
|
|
11 |
from pathlib import Path
|
12 |
import subprocess
|
13 |
import getpass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
rag = Rag()
|
16 |
|
17 |
|
|
|
18 |
def generate_uuid(state):
|
19 |
# Check if UUID already exists in session state
|
20 |
if state["user_uuid"] is None:
|
@@ -50,29 +63,6 @@ class PDFSearchApp:
|
|
50 |
pdf_path=file.name
|
51 |
#if ppt will get replaced with path of ppt!
|
52 |
|
53 |
-
#if extension is .ppt or .pptx, convert
|
54 |
-
if ext == ".ppt" or ext == ".pptx": #need to test with a ppt key...
|
55 |
-
'''
|
56 |
-
import comtypes.client
|
57 |
-
powerpoint = comtypes.client.CreateObject("PowerPoint.Application")
|
58 |
-
powerpoint.Visible = 1
|
59 |
-
presentation = powerpoint.Presentations.Open(file)
|
60 |
-
output_file = os.path.splitext(file)[0] + '.pdf'
|
61 |
-
output_directory = os.path.dirname(file)
|
62 |
-
presentation.SaveAs(os.path.join(output_directory, output_file), 32) # 32 is the formatType for PDF
|
63 |
-
presentation.Close()
|
64 |
-
powerpoint.Quit()
|
65 |
-
file = os.path.join(output_directory, output_file) #swap file to be used to the outputted pdf file instead
|
66 |
-
# Extract the last part of the path (file name)
|
67 |
-
name = os.path.basename(file)
|
68 |
-
# Split the base name into name and extension
|
69 |
-
name, ext = os.path.splitext(name)
|
70 |
-
print(name)
|
71 |
-
self.current_pdf = os.path.join(output_directory, output_file)
|
72 |
-
pdf_path = os.path.join(output_directory, output_file)'
|
73 |
-
'''
|
74 |
-
print("pptx not supported on spaces")
|
75 |
-
|
76 |
|
77 |
# Replace spaces and hyphens with underscores in the name
|
78 |
modified_filename = name.replace(" ", "_").replace("-", "_")
|
@@ -154,12 +144,9 @@ class PDFSearchApp:
|
|
154 |
def delete(state,choice):
|
155 |
#delete file in pages, then use middleware to delete collection
|
156 |
# 1. Create a milvus client
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
# uri="http://localhost:19530",
|
161 |
-
# token="root:Milvus"
|
162 |
-
# )
|
163 |
path = f"pages/{choice}"
|
164 |
if os.path.exists(path):
|
165 |
shutil.rmtree(path)
|
@@ -168,6 +155,18 @@ class PDFSearchApp:
|
|
168 |
return f"Deleted {choice}"
|
169 |
else:
|
170 |
return "Directory not found"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
def list_downloaded_hf_models(state):
|
173 |
# Determine the cache directory
|
@@ -179,18 +178,19 @@ class PDFSearchApp:
|
|
179 |
# Traverse the cache directory
|
180 |
for repo_dir in hf_cache_dir.glob('models--*'):
|
181 |
# Extract the model name from the directory structure
|
182 |
-
model_name = repo_dir.name.split('--', 1)[-1].replace('
|
183 |
model_names.append(model_name)
|
184 |
|
185 |
return model_names
|
186 |
|
187 |
|
188 |
-
def list_downloaded_ollama_models(state
|
189 |
# Retrieve the current user's name
|
190 |
username = getpass.getuser()
|
191 |
|
192 |
# Construct the target directory path
|
193 |
-
base_path = f"C:\\Users\\{username}\\NEW_PATH\\manifests\\registry.ollama.ai\\library"
|
|
|
194 |
|
195 |
try:
|
196 |
# List all entries in the directory
|
@@ -206,18 +206,29 @@ class PDFSearchApp:
|
|
206 |
except Exception as e:
|
207 |
print(f"An error occurred: {e}")
|
208 |
|
209 |
-
def model_settings(state,hfchoice, ollamachoice,
|
210 |
os.environ['colpali'] = hfchoice
|
|
|
|
|
211 |
os.environ['ollama'] = ollamachoice
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
|
216 |
|
217 |
def create_ui():
|
218 |
app = PDFSearchApp()
|
219 |
|
220 |
-
with gr.Blocks(css="footer{display:none !important}") as demo:
|
221 |
state = gr.State(value={"user_uuid": None})
|
222 |
|
223 |
|
@@ -256,26 +267,47 @@ def create_ui():
|
|
256 |
with gr.Column():
|
257 |
# Button to delete (TBD)
|
258 |
choice = gr.Dropdown(list(app.display_file_list()),label="Choice")
|
259 |
-
delete_button = gr.Button("Delete Document From DB")
|
260 |
status1 = gr.Textbox(label="Deletion Status", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
with gr.Tab("AI Model Settings"): #deletion of collections, changing of model parameters etc
|
263 |
with gr.Column():
|
264 |
# Button to delete (TBD)
|
265 |
-
hfchoice = gr.Dropdown(app.list_downloaded_hf_models(),label="Visual Document Retrieval (VDR) Model")
|
266 |
-
ollamachoice = gr.Dropdown(app.list_downloaded_ollama_models(),label="Secondary Visual Retrieval-Augmented Generation (RAG) Model")
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
273 |
)
|
274 |
model_button = gr.Button("Update Settings")
|
275 |
status2 = gr.Textbox(label="Update Status", interactive=False)
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
|
280 |
# Event handlers
|
281 |
file_input.change(
|
@@ -296,10 +328,16 @@ def create_ui():
|
|
296 |
inputs=[choice],
|
297 |
outputs=[status1]
|
298 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
model_button.click(
|
301 |
fn=app.model_settings,
|
302 |
-
inputs=[hfchoice, ollamachoice,
|
303 |
outputs=[status2]
|
304 |
)
|
305 |
|
@@ -307,5 +345,6 @@ def create_ui():
|
|
307 |
|
308 |
if __name__ == "__main__":
|
309 |
demo = create_ui()
|
|
|
310 |
demo.launch()
|
311 |
|
|
|
11 |
from pathlib import Path
|
12 |
import subprocess
|
13 |
import getpass
|
14 |
+
# importing necessary functions from dotenv library
|
15 |
+
from dotenv import load_dotenv, dotenv_values
|
16 |
+
import dotenv
|
17 |
+
import platform
|
18 |
+
import time
|
19 |
+
|
20 |
+
# loading variables from .env file
|
21 |
+
dotenv_file = dotenv.find_dotenv()
|
22 |
+
dotenv.load_dotenv(dotenv_file)
|
23 |
+
|
24 |
+
#kickstart docker and ollama servers
|
25 |
+
|
26 |
|
27 |
rag = Rag()
|
28 |
|
29 |
|
30 |
+
|
31 |
def generate_uuid(state):
|
32 |
# Check if UUID already exists in session state
|
33 |
if state["user_uuid"] is None:
|
|
|
63 |
pdf_path=file.name
|
64 |
#if ppt will get replaced with path of ppt!
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Replace spaces and hyphens with underscores in the name
|
68 |
modified_filename = name.replace(" ", "_").replace("-", "_")
|
|
|
144 |
def delete(state,choice):
|
145 |
#delete file in pages, then use middleware to delete collection
|
146 |
# 1. Create a milvus client
|
147 |
+
client = MilvusClient(
|
148 |
+
uri="localhost"
|
149 |
+
)
|
|
|
|
|
|
|
150 |
path = f"pages/{choice}"
|
151 |
if os.path.exists(path):
|
152 |
shutil.rmtree(path)
|
|
|
155 |
return f"Deleted {choice}"
|
156 |
else:
|
157 |
return "Directory not found"
|
158 |
+
def dbupdate(state,metric_type,m_num,ef_num,topk):
|
159 |
+
os.environ['metrictype'] = metric_type
|
160 |
+
# Update the .env file with the new value
|
161 |
+
dotenv.set_key(dotenv_file, 'metrictype', metric_type)
|
162 |
+
os.environ['mnum'] = str(m_num)
|
163 |
+
dotenv.set_key(dotenv_file, 'mnum', str(m_num))
|
164 |
+
os.environ['efnum'] = str(ef_num)
|
165 |
+
dotenv.set_key(dotenv_file, 'efnum', str(ef_num))
|
166 |
+
os.environ['topk'] = str(topk)
|
167 |
+
dotenv.set_key(dotenv_file, 'topk', str(topk))
|
168 |
+
|
169 |
+
return "DB Settings Updated, Restart App To Load"
|
170 |
|
171 |
def list_downloaded_hf_models(state):
|
172 |
# Determine the cache directory
|
|
|
178 |
# Traverse the cache directory
|
179 |
for repo_dir in hf_cache_dir.glob('models--*'):
|
180 |
# Extract the model name from the directory structure
|
181 |
+
model_name = repo_dir.name.split('--', 1)[-1].replace('--', '/')
|
182 |
model_names.append(model_name)
|
183 |
|
184 |
return model_names
|
185 |
|
186 |
|
187 |
+
def list_downloaded_ollama_models(state):
|
188 |
# Retrieve the current user's name
|
189 |
username = getpass.getuser()
|
190 |
|
191 |
# Construct the target directory path
|
192 |
+
#base_path = f"C:\\Users\\{username}\\NEW_PATH\\manifests\\registry.ollama.ai\\library" #this is for if ollama pull is called from C://, if ollama pulls are called from the proj dir, use the NEW_PATH in the proj dir!
|
193 |
+
base_path = f"NEW_PATH\\manifests\\registry.ollama.ai\\library" #relative to proj dir! (IMPT: OLLAMA PULL COMMAND IN PROJ DIR!!!)
|
194 |
|
195 |
try:
|
196 |
# List all entries in the directory
|
|
|
206 |
except Exception as e:
|
207 |
print(f"An error occurred: {e}")
|
208 |
|
209 |
+
def model_settings(state,hfchoice, ollamachoice,flash, temp):
|
210 |
os.environ['colpali'] = hfchoice
|
211 |
+
# Update the .env file with the new value
|
212 |
+
dotenv.set_key(dotenv_file, 'colpali', hfchoice)
|
213 |
os.environ['ollama'] = ollamachoice
|
214 |
+
dotenv.set_key(dotenv_file, 'ollama', ollamachoice)
|
215 |
+
if flash == "Enabled":
|
216 |
+
os.environ['flashattn'] = "1"
|
217 |
+
dotenv.set_key(dotenv_file, 'flashattn', "1")
|
218 |
+
else:
|
219 |
+
os.environ['flashattn'] = "0"
|
220 |
+
dotenv.set_key(dotenv_file, 'flashattn', "0")
|
221 |
+
os.environ['temperature'] = str(temp)
|
222 |
+
dotenv.set_key(dotenv_file, 'temperature', str(temp))
|
223 |
+
|
224 |
+
return "Models Updated, Restart App To Use New Settings"
|
225 |
|
226 |
|
227 |
|
228 |
def create_ui():
|
229 |
app = PDFSearchApp()
|
230 |
|
231 |
+
with gr.Blocks(theme=gr.themes.Ocean(),css ="footer{display:none !important}") as demo:
|
232 |
state = gr.State(value={"user_uuid": None})
|
233 |
|
234 |
|
|
|
267 |
with gr.Column():
|
268 |
# Button to delete (TBD)
|
269 |
choice = gr.Dropdown(list(app.display_file_list()),label="Choice")
|
|
|
270 |
status1 = gr.Textbox(label="Deletion Status", interactive=False)
|
271 |
+
delete_button = gr.Button("Delete Document From DB")
|
272 |
+
|
273 |
+
# Create the dropdown component with default value as the first option
|
274 |
+
#Milvusindex = gr.Dropdown(["HNSW","FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ", "RHNSW_FLAT"], value="HNSW", label="Select Vector DB Index Parameter")
|
275 |
+
metric_type = gr.Dropdown(choices=["IP", "L2", "COSINE"],value="IP",label="Metric Type (Mathematical function to measure similarity)")
|
276 |
+
m_num = gr.Dropdown(
|
277 |
+
choices=["8", "16", "32", "64"], value="16",label="M Vectors (Maximum number of neighbors each node can connect to in the graph)")
|
278 |
+
ef_num = gr.Slider(
|
279 |
+
minimum=50,
|
280 |
+
maximum=1000,
|
281 |
+
value=500,
|
282 |
+
step=10,
|
283 |
+
label="EF Construction (Number of candidate neighbors considered for connection during index construction)"
|
284 |
+
)
|
285 |
+
topk = gr.Slider(
|
286 |
+
minimum=1,
|
287 |
+
maximum=100,
|
288 |
+
value=50,
|
289 |
+
step=1,
|
290 |
+
label="Top-K (Maximum number of entities to return in a single search of a document)"
|
291 |
+
)
|
292 |
+
db_button = gr.Button("Update DB Settings")
|
293 |
+
status3 = gr.Textbox(label="DB Update Status", interactive=False)
|
294 |
+
|
295 |
|
296 |
with gr.Tab("AI Model Settings"): #deletion of collections, changing of model parameters etc
|
297 |
with gr.Column():
|
298 |
# Button to delete (TBD)
|
299 |
+
hfchoice = gr.Dropdown(app.list_downloaded_hf_models(),value=os.environ['colpali'], label="Visual Document Retrieval (VDR) Model")
|
300 |
+
ollamachoice = gr.Dropdown(app.list_downloaded_ollama_models(),value=os.environ['ollama'],label="Secondary Visual Retrieval-Augmented Generation (RAG) Model")
|
301 |
+
flash = gr.Dropdown(["Enabled","Disabled"], value = "Enabled",label ="Flash Attention 2.0 Acceleration")
|
302 |
+
temp = gr.Slider(
|
303 |
+
minimum=0.1,
|
304 |
+
maximum=1,
|
305 |
+
value=0.8,
|
306 |
+
step=0.1,
|
307 |
+
label="RAG Temperature"
|
308 |
)
|
309 |
model_button = gr.Button("Update Settings")
|
310 |
status2 = gr.Textbox(label="Update Status", interactive=False)
|
|
|
|
|
|
|
311 |
|
312 |
# Event handlers
|
313 |
file_input.change(
|
|
|
328 |
inputs=[choice],
|
329 |
outputs=[status1]
|
330 |
)
|
331 |
+
|
332 |
+
db_button.click(
|
333 |
+
fn=app.dbupdate,
|
334 |
+
inputs=[metric_type,m_num,ef_num,topk],
|
335 |
+
outputs=[status3]
|
336 |
+
)
|
337 |
|
338 |
model_button.click(
|
339 |
fn=app.model_settings,
|
340 |
+
inputs=[hfchoice, ollamachoice,flash,temp],
|
341 |
outputs=[status2]
|
342 |
)
|
343 |
|
|
|
345 |
|
346 |
if __name__ == "__main__":
|
347 |
demo = create_ui()
|
348 |
+
#demo.launch(auth=("admin", "pass1234")) for with login page config
|
349 |
demo.launch()
|
350 |
|
colpali_manager.py
CHANGED
@@ -17,9 +17,16 @@ import spaces
|
|
17 |
|
18 |
|
19 |
#this part is for local runs
|
|
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
#switch to locally downloading models & loading locally rather than from hf
|
25 |
#
|
@@ -28,45 +35,48 @@ current_working_directory = os.getcwd()
|
|
28 |
save_directory = model_name # Directory to save the specific model name
|
29 |
save_directory = os.path.join(current_working_directory, save_directory)
|
30 |
|
31 |
-
processor_directory = '
|
32 |
processor_directory = os.path.join(current_working_directory, processor_directory)
|
33 |
|
34 |
|
35 |
-
model = ColIdefics3.from_pretrained(
|
36 |
-
model_name,
|
37 |
-
torch_dtype=torch.bfloat16,
|
38 |
-
device_map=device,
|
39 |
-
#attn_implementation="flash_attention_2",
|
40 |
-
).eval()
|
41 |
-
processor = cast(ColIdefics3Processor, ColIdefics3Processor.from_pretrained(model_name))
|
42 |
|
43 |
-
"""
|
44 |
if not os.path.exists(save_directory): #download if directory not created/model not loaded
|
45 |
# Directory does not exist; create it
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
os.makedirs(save_directory)
|
47 |
print(f"Directory '{save_directory}' created.")
|
48 |
-
model = ColIdefics3.from_pretrained(
|
49 |
-
model_name,
|
50 |
-
torch_dtype=torch.bfloat16,
|
51 |
-
device_map=device,
|
52 |
-
attn_implementation="flash_attention_2",
|
53 |
-
).eval()
|
54 |
model.save_pretrained(save_directory)
|
55 |
os.makedirs(processor_directory)
|
56 |
-
processor = cast(ColIdefics3Processor, ColIdefics3Processor.from_pretrained(model_name))
|
57 |
-
|
58 |
processor.save_pretrained(processor_directory)
|
59 |
|
60 |
else:
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
class ColpaliManager:
|
67 |
|
68 |
|
69 |
-
def __init__(self, device = "
|
70 |
|
71 |
print(f"Initializing ColpaliManager with device {device} and model {model_name}")
|
72 |
|
@@ -82,12 +92,12 @@ class ColpaliManager:
|
|
82 |
|
83 |
@spaces.GPU
|
84 |
def get_images(self, paths: list[str]) -> List[Image.Image]:
|
85 |
-
model.to("
|
86 |
return [Image.open(path) for path in paths]
|
87 |
|
88 |
@spaces.GPU
|
89 |
def process_images(self, image_paths:list[str], batch_size=5):
|
90 |
-
model.to("
|
91 |
print(f"Processing {len(image_paths)} image_paths")
|
92 |
|
93 |
images = self.get_images(image_paths)
|
@@ -113,7 +123,7 @@ class ColpaliManager:
|
|
113 |
|
114 |
@spaces.GPU
|
115 |
def process_text(self, texts: list[str]):
|
116 |
-
model.to("
|
117 |
print(f"Processing {len(texts)} texts")
|
118 |
|
119 |
dataloader = DataLoader(
|
|
|
17 |
|
18 |
|
19 |
#this part is for local runs
|
20 |
+
torch.cuda.empty_cache()
|
21 |
|
22 |
+
#get model name from .env variable & set directory & processor dir as the model names!
|
23 |
+
import dotenv
|
24 |
+
# Load the .env file
|
25 |
+
dotenv_file = dotenv.find_dotenv()
|
26 |
+
dotenv.load_dotenv(dotenv_file)
|
27 |
+
|
28 |
+
model_name = os.environ['colpali'] #"vidore/colSmol-256M"
|
29 |
+
device = get_torch_device("cuda") #try using cpu instead of cuda?
|
30 |
|
31 |
#switch to locally downloading models & loading locally rather than from hf
|
32 |
#
|
|
|
35 |
save_directory = model_name # Directory to save the specific model name
|
36 |
save_directory = os.path.join(current_working_directory, save_directory)
|
37 |
|
38 |
+
processor_directory = model_name+'_processor' # Directory to save the processor
|
39 |
processor_directory = os.path.join(current_working_directory, processor_directory)
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
43 |
if not os.path.exists(save_directory): #download if directory not created/model not loaded
|
44 |
# Directory does not exist; create it
|
45 |
+
if "colSmol" in model_name: #if colsmol
|
46 |
+
model = ColIdefics3.from_pretrained(
|
47 |
+
model_name,
|
48 |
+
torch_dtype=torch.bfloat16,
|
49 |
+
device_map=device,
|
50 |
+
attn_implementation="flash_attention_2",
|
51 |
+
).eval()
|
52 |
+
processor = cast(ColIdefics3Processor, ColIdefics3Processor.from_pretrained(model_name))
|
53 |
+
else: #if colpali v1.3 etc
|
54 |
+
model = ColPali.from_pretrained(
|
55 |
+
model_name,
|
56 |
+
torch_dtype=torch.bfloat16,
|
57 |
+
device_map=device,
|
58 |
+
attn_implementation="flash_attention_2",
|
59 |
+
).eval()
|
60 |
+
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
61 |
os.makedirs(save_directory)
|
62 |
print(f"Directory '{save_directory}' created.")
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
model.save_pretrained(save_directory)
|
64 |
os.makedirs(processor_directory)
|
|
|
|
|
65 |
processor.save_pretrained(processor_directory)
|
66 |
|
67 |
else:
|
68 |
+
if "colSmol" in model_name:
|
69 |
+
model = ColIdefics3.from_pretrained(save_directory)
|
70 |
+
processor = ColIdefics3Processor.from_pretrained(processor_directory, use_fast=True)
|
71 |
+
else:
|
72 |
+
model = ColPali.from_pretrained(save_directory)
|
73 |
+
processor = ColPaliProcessor.from_pretrained(processor_directory, use_fast=True)
|
74 |
|
75 |
|
76 |
class ColpaliManager:
|
77 |
|
78 |
|
79 |
+
def __init__(self, device = "cuda", model_name = model_name): #need to hot potato/use diff gpus between colpali & ollama
|
80 |
|
81 |
print(f"Initializing ColpaliManager with device {device} and model {model_name}")
|
82 |
|
|
|
92 |
|
93 |
@spaces.GPU
|
94 |
def get_images(self, paths: list[str]) -> List[Image.Image]:
|
95 |
+
model.to("cuda")
|
96 |
return [Image.open(path) for path in paths]
|
97 |
|
98 |
@spaces.GPU
|
99 |
def process_images(self, image_paths:list[str], batch_size=5):
|
100 |
+
model.to("cuda")
|
101 |
print(f"Processing {len(image_paths)} image_paths")
|
102 |
|
103 |
images = self.get_images(image_paths)
|
|
|
123 |
|
124 |
@spaces.GPU
|
125 |
def process_text(self, texts: list[str]):
|
126 |
+
model.to("cuda") #ensure this is commented out so ollama/multimodal llm can use gpu! (nah wrong, need to enable so that it can process multiple)
|
127 |
print(f"Processing {len(texts)} texts")
|
128 |
|
129 |
dataloader = DataLoader(
|
milvus_manager.py
CHANGED
@@ -2,11 +2,18 @@ from pymilvus import MilvusClient, DataType
|
|
2 |
import numpy as np
|
3 |
import concurrent.futures
|
4 |
from pymilvus import Collection
|
|
|
5 |
|
6 |
class MilvusManager:
|
7 |
def __init__(self, milvus_uri, collection_name, create_collection, dim=128):
|
8 |
-
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
self.collection_name = collection_name
|
11 |
self.dim = dim
|
12 |
|
@@ -40,13 +47,15 @@ class MilvusManager:
|
|
40 |
|
41 |
def create_index(self):
|
42 |
index_params = self.client.prepare_index_params()
|
|
|
43 |
index_params.add_index(
|
44 |
field_name="vector",
|
45 |
index_name="vector_index",
|
46 |
-
index_type="
|
47 |
-
metric_type="IP"
|
48 |
params={
|
49 |
-
"
|
|
|
50 |
},
|
51 |
)
|
52 |
|
@@ -59,7 +68,7 @@ class MilvusManager:
|
|
59 |
collections = self.client.list_collections()
|
60 |
|
61 |
# Set search parameters (here, using Inner Product metric).
|
62 |
-
search_params = {"metric_type": "
|
63 |
|
64 |
# Set to store unique (doc_id, collection_name) pairs across all collections.
|
65 |
doc_collection_pairs = set()
|
@@ -71,7 +80,7 @@ class MilvusManager:
|
|
71 |
results = self.client.search(
|
72 |
collection,
|
73 |
data,
|
74 |
-
limit=
|
75 |
output_fields=["vector", "seq_id", "doc_id"],
|
76 |
search_params=search_params,
|
77 |
)
|
|
|
2 |
import numpy as np
|
3 |
import concurrent.futures
|
4 |
from pymilvus import Collection
|
5 |
+
import os
|
6 |
|
7 |
class MilvusManager:
|
8 |
def __init__(self, milvus_uri, collection_name, create_collection, dim=128):
|
9 |
+
|
10 |
+
#import environ variables from .env
|
11 |
+
import dotenv
|
12 |
+
# Load the .env file
|
13 |
+
dotenv_file = dotenv.find_dotenv()
|
14 |
+
dotenv.load_dotenv(dotenv_file)
|
15 |
+
|
16 |
+
self.client = MilvusClient(uri="http://localhost:19530", token="root:Milvus")
|
17 |
self.collection_name = collection_name
|
18 |
self.dim = dim
|
19 |
|
|
|
47 |
|
48 |
def create_index(self):
|
49 |
index_params = self.client.prepare_index_params()
|
50 |
+
|
51 |
index_params.add_index(
|
52 |
field_name="vector",
|
53 |
index_name="vector_index",
|
54 |
+
index_type="HNSW", #use HNSW option if got more mem, if not use IVF for faster processing
|
55 |
+
metric_type=os.environ["metrictype"], #"IP"
|
56 |
params={
|
57 |
+
"M": int(os.environ["mnum"]), #M:16 for HNSW, capital M
|
58 |
+
"efConstruction": int(os.environ["efnum"]), #500 for HNSW
|
59 |
},
|
60 |
)
|
61 |
|
|
|
68 |
collections = self.client.list_collections()
|
69 |
|
70 |
# Set search parameters (here, using Inner Product metric).
|
71 |
+
search_params = {"metric_type": os.environ["metrictype"], "params": {}} #default metric type is "IP"
|
72 |
|
73 |
# Set to store unique (doc_id, collection_name) pairs across all collections.
|
74 |
doc_collection_pairs = set()
|
|
|
80 |
results = self.client.search(
|
81 |
collection,
|
82 |
data,
|
83 |
+
limit=int(os.environ["topk"]), # Adjust limit per collection as needed. (default is 50)
|
84 |
output_fields=["vector", "seq_id", "doc_id"],
|
85 |
search_params=search_params,
|
86 |
)
|
rag.py
CHANGED
@@ -1,10 +1,16 @@
|
|
1 |
import requests
|
2 |
import os
|
3 |
-
import google.generativeai as genai
|
4 |
|
5 |
from typing import List
|
6 |
from utils import encode_image
|
7 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
|
@@ -35,8 +41,14 @@ class Rag:
|
|
35 |
return f"Error: {str(e)}"
|
36 |
|
37 |
#os.environ['OPENAI_API_KEY'] = "for the love of Jesus let this work"
|
38 |
-
|
39 |
def get_answer_from_openai(self, query, imagesPaths):
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
""" #scuffed local hf inference (transformers incompatible to colpali version req, use ollama, more reliable, easier to use plus web server ready)
|
41 |
print(f"Querying for query={query}, imagesPaths={imagesPaths}")
|
42 |
|
@@ -65,8 +77,12 @@ class Rag:
|
|
65 |
|
66 |
#ollama method below
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
# Close model thread (colpali)
|
@@ -74,13 +90,14 @@ class Rag:
|
|
74 |
|
75 |
try:
|
76 |
|
77 |
-
response = chat(
|
78 |
-
|
79 |
-
|
80 |
{
|
81 |
'role': 'user',
|
82 |
'content': query,
|
83 |
'images': imagesPaths,
|
|
|
84 |
}
|
85 |
],
|
86 |
)
|
@@ -136,4 +153,4 @@ class Rag:
|
|
136 |
# query = "Based on attached images, how many new cases were reported during second wave peak"
|
137 |
# imagesPaths = ["covid_slides_page_8.png", "covid_slides_page_8.png"]
|
138 |
|
139 |
-
# rag.get_answer_from_gemini(query, imagesPaths)
|
|
|
1 |
import requests
|
2 |
import os
|
|
|
3 |
|
4 |
from typing import List
|
5 |
from utils import encode_image
|
6 |
from PIL import Image
|
7 |
+
from ollama import chat
|
8 |
+
import torch
|
9 |
+
import subprocess
|
10 |
+
import psutil
|
11 |
+
import torch
|
12 |
+
from transformers import AutoModel, AutoTokenizer
|
13 |
+
import google.generativeai as genai
|
14 |
|
15 |
|
16 |
|
|
|
41 |
return f"Error: {str(e)}"
|
42 |
|
43 |
#os.environ['OPENAI_API_KEY'] = "for the love of Jesus let this work"
|
44 |
+
|
45 |
def get_answer_from_openai(self, query, imagesPaths):
|
46 |
+
#import environ variables from .env
|
47 |
+
import dotenv
|
48 |
+
|
49 |
+
# Load the .env file
|
50 |
+
dotenv_file = dotenv.find_dotenv()
|
51 |
+
dotenv.load_dotenv(dotenv_file)
|
52 |
""" #scuffed local hf inference (transformers incompatible to colpali version req, use ollama, more reliable, easier to use plus web server ready)
|
53 |
print(f"Querying for query={query}, imagesPaths={imagesPaths}")
|
54 |
|
|
|
77 |
|
78 |
#ollama method below
|
79 |
|
80 |
+
torch.cuda.empty_cache() #release cuda so that ollama can use gpu!
|
81 |
+
|
82 |
+
|
83 |
+
os.environ['OLLAMA_FLASH_ATTENTION'] = os.environ['flashattn'] #int "1"
|
84 |
+
if os.environ['ollama'] == "minicpm-v":
|
85 |
+
os.environ['ollama'] = "minicpm-v:8b-2.6-q8_0" #set to quantized version
|
86 |
|
87 |
|
88 |
# Close model thread (colpali)
|
|
|
90 |
|
91 |
try:
|
92 |
|
93 |
+
response = chat(
|
94 |
+
model=os.environ['ollama'],
|
95 |
+
messages=[
|
96 |
{
|
97 |
'role': 'user',
|
98 |
'content': query,
|
99 |
'images': imagesPaths,
|
100 |
+
"temperature":float(os.environ['temperature']), #test if temp makes a diff
|
101 |
}
|
102 |
],
|
103 |
)
|
|
|
153 |
# query = "Based on attached images, how many new cases were reported during second wave peak"
|
154 |
# imagesPaths = ["covid_slides_page_8.png", "covid_slides_page_8.png"]
|
155 |
|
156 |
+
# rag.get_answer_from_gemini(query, imagesPaths)
|
requirements.txt
CHANGED
@@ -1,9 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
git+https://github.com/illuin-tech/colpali
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
spaces==0.30.4
|
9 |
-
google-generativeai==0.8.3
|
|
|
1 |
+
gradio
|
2 |
+
PyMuPDF
|
3 |
+
pdf2image
|
4 |
+
pymilvus
|
5 |
+
tqdm
|
6 |
+
pillow
|
7 |
+
spaces
|
8 |
+
google-generativeai
|
9 |
git+https://github.com/illuin-tech/colpali
|
10 |
+
timm==1.0.13
|
11 |
+
transformers
|
12 |
+
https://github.com/woct0rdho/triton-windows/releases/download/v3.2.0-windows.post10/triton-3.2.0-cp311-cp311-win_amd64.wh
|
13 |
+
comtypes
|
14 |
+
python-dotenv
|
15 |
+
colpali-engine[interpretability]
|
|
|
|