KebabLover commited on
Commit
47728dd
·
1 Parent(s): ae04b8f

update agent to genearate streamlit app

Browse files
Files changed (8) hide show
  1. README.md +6 -6
  2. app.py +51 -2
  3. prompts.old +321 -0
  4. prompts.yaml +411 -77
  5. requirements.txt +4 -1
  6. streamlit_app.py +179 -16
  7. tools/validate_final_answer.py +21 -0
  8. visualizations.py +423 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: First Agent Template
3
- emoji:
4
  colorFrom: pink
5
  colorTo: yellow
6
  sdk: gradio
@@ -15,16 +15,16 @@ tags:
15
  - agent-course
16
  ---
17
 
18
- # Simple Local Agent 🤖
19
 
20
  Un agent conversationnel simple utilisant SmoLAgents pour se connecter à un modèle de langage, que ce soit via un serveur local (LMStudio) ou via d'autres APIs.
21
 
22
- ## Prérequis 📋
23
 
24
  - Python 3.8+
25
  - Un modèle de langage hébergé localement ou accessible via une API
26
 
27
- ## Installation ⚙️
28
 
29
  1. Installez les dépendances requises :
30
 
@@ -32,7 +32,7 @@ Un agent conversationnel simple utilisant SmoLAgents pour se connecter à un mod
32
  pip install -r requirements.txt
33
  ```
34
 
35
- ## Utilisation 💻
36
 
37
  ### Interface Gradio
38
 
@@ -124,4 +124,4 @@ Voici quelques exemples de questions que vous pouvez poser à l'agent :
124
 
125
  ---
126
 
127
- *Consultez la référence de configuration sur https://huggingface.co/docs/hub/spaces-config-reference* 🌐
 
1
  ---
2
  title: First Agent Template
3
+ emoji: "🤖"
4
  colorFrom: pink
5
  colorTo: yellow
6
  sdk: gradio
 
15
  - agent-course
16
  ---
17
 
18
+ # Simple Local Agent
19
 
20
  Un agent conversationnel simple utilisant SmoLAgents pour se connecter à un modèle de langage, que ce soit via un serveur local (LMStudio) ou via d'autres APIs.
21
 
22
+ ## Prérequis
23
 
24
  - Python 3.8+
25
  - Un modèle de langage hébergé localement ou accessible via une API
26
 
27
+ ## Installation
28
 
29
  1. Installez les dépendances requises :
30
 
 
32
  pip install -r requirements.txt
33
  ```
34
 
35
+ ## Utilisation
36
 
37
  ### Interface Gradio
38
 
 
124
 
125
  ---
126
 
127
+ *Consultez la référence de configuration sur https://huggingface.co/docs/hub/spaces-config-reference*
app.py CHANGED
@@ -3,12 +3,17 @@ import datetime
3
  import requests
4
  import pytz
5
  import yaml
 
 
 
 
 
 
6
  from tools.final_answer import FinalAnswerTool
7
  from tools.visit_webpage import VisitWebpageTool
8
  from tools.web_search import DuckDuckGoSearchTool
9
  from Gradio_UI import GradioUI
10
  from smolagents.models import OpenAIServerModel
11
- from tools.shell_tool import ShellCommandTool
12
  from tools.create_file_tool import CreateFileTool
13
  from tools.modify_file_tool import ModifyFileTool
14
 
@@ -71,9 +76,18 @@ image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_co
71
  with open("prompts.yaml", 'r') as stream:
72
  prompt_templates = yaml.safe_load(stream)
73
 
 
 
 
 
 
 
 
 
 
74
  agent = CodeAgent(
75
  model=model,
76
- tools=[final_answer, DuckDuckGoSearchTool(), VisitWebpageTool(), ShellCommandTool(), CreateFileTool(), ModifyFileTool()],
77
  max_steps=6,
78
  verbosity_level=1,
79
  grammar=None,
@@ -83,5 +97,40 @@ agent = CodeAgent(
83
  prompt_templates=prompt_templates
84
  )
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
  GradioUI(agent).launch()
 
3
  import requests
4
  import pytz
5
  import yaml
6
+ import os
7
+ import sys
8
+ import subprocess # Ajout de l'import manquant pour ShellCommandTool
9
+ import io
10
+ import json
11
+ from huggingface_hub import HfApi
12
  from tools.final_answer import FinalAnswerTool
13
  from tools.visit_webpage import VisitWebpageTool
14
  from tools.web_search import DuckDuckGoSearchTool
15
  from Gradio_UI import GradioUI
16
  from smolagents.models import OpenAIServerModel
 
17
  from tools.create_file_tool import CreateFileTool
18
  from tools.modify_file_tool import ModifyFileTool
19
 
 
76
  with open("prompts.yaml", 'r') as stream:
77
  prompt_templates = yaml.safe_load(stream)
78
 
79
+ # Tentative de correction pour ShellCommandTool
80
+ try:
81
+ from tools.shell_tool import ShellCommandTool
82
+ shell_tool = ShellCommandTool()
83
+ except Exception as e:
84
+ print(f"Erreur lors du chargement de ShellCommandTool: {e}")
85
+ # Créer une version simplifiée de l'outil si nécessaire
86
+ shell_tool = None
87
+
88
  agent = CodeAgent(
89
  model=model,
90
+ tools=[final_answer, DuckDuckGoSearchTool(), VisitWebpageTool(), CreateFileTool(), ModifyFileTool()],
91
  max_steps=6,
92
  verbosity_level=1,
93
  grammar=None,
 
97
  prompt_templates=prompt_templates
98
  )
99
 
100
+ # Ajouter ShellCommandTool conditionnellement
101
+ if shell_tool is not None:
102
+ agent.tools['shell_command'] = shell_tool
103
+
104
+ # Sauvegarder manuellement sans utiliser to_dict() pour éviter les erreurs de validation
105
+ agent_data = {
106
+ "name": agent.name,
107
+ "description": agent.description,
108
+ "model": agent.model.to_dict() if hasattr(agent.model, "to_dict") else str(agent.model),
109
+ "tools": [tool.__class__.__name__ for tool in agent.tools.values()],
110
+ "max_steps": agent.max_steps,
111
+ "grammar": agent.grammar,
112
+ "planning_interval": agent.planning_interval,
113
+ }
114
+
115
+ # # Sauvegarder l'agent au format JSON personnalisé
116
+ # with open("agent.json", "w", encoding="utf-8") as f:
117
+ # json.dump(agent_data, f, ensure_ascii=False, indent=2)
118
+
119
+ # # La méthode push_to_hub pose problème avec les emojis, utiliser plutôt le script push_to_hf.py
120
+ # print("Agent sauvegardé dans agent.json. Utilisez push_to_hf.py pour le pousser sur Hugging Face.")
121
+
122
+ # Utiliser l'API Hugging Face directement avec encodage UTF-8
123
+ # try:
124
+ # api = HfApi()
125
+ # api.upload_file(
126
+ # path_or_fileobj="agent.json",
127
+ # path_in_repo="agent.json",
128
+ # repo_id="KebabLover/SmolCoderAgent_0_1",
129
+ # repo_type="space",
130
+ # commit_message="Mise à jour de l'agent"
131
+ # )
132
+ # print("Agent poussé avec succès vers Hugging Face!")
133
+ # except Exception as e:
134
+ # print(f"Erreur lors du push vers Hugging Face: {e}")
135
 
136
  GradioUI(agent).launch()
prompts.old ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ "system_prompt": |-
2
+ You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can.
3
+ To do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.
4
+ To solve the task, you must plan forward to proceed in a series of steps, in a cycle of 'Thought:', 'Code:', and 'Observation:' sequences.
5
+
6
+ At each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use.
7
+ Then in the 'Code:' sequence, you should write the code in simple Python. The code sequence must end with '<end_code>' sequence.
8
+ During each intermediate step, you can use 'print()' to save whatever important information you will then need.
9
+ These print outputs will then appear in the 'Observation:' field, which will be available as input for the next step.
10
+ In the end you have to return a final answer using the `final_answer` tool.
11
+
12
+ Here are a few examples using notional tools:
13
+ ---
14
+ Task: "Generate an image of the oldest person in this document."
15
+
16
+ Thought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.
17
+ Code:
18
+ ```py
19
+ answer = document_qa(document=document, question="Who is the oldest person mentioned?")
20
+ print(answer)
21
+ ```<end_code>
22
+ Observation: "The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland."
23
+
24
+ Thought: I will now generate an image showcasing the oldest person.
25
+ Code:
26
+ ```py
27
+ image = image_generator("A portrait of John Doe, a 55-year-old man living in Canada.")
28
+ final_answer(image)
29
+ ```<end_code>
30
+
31
+ ---
32
+ Task: "What is the result of the following operation: 5 + 3 + 1294.678?"
33
+
34
+ Thought: I will use python code to compute the result of the operation and then return the final answer using the `final_answer` tool
35
+ Code:
36
+ ```py
37
+ result = 5 + 3 + 1294.678
38
+ final_answer(result)
39
+ ```<end_code>
40
+
41
+ ---
42
+ Task:
43
+ "Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.
44
+ You have been provided with these additional arguments, that you can access using the keys as variables in your python code:
45
+ {'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}"
46
+
47
+ Thought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.
48
+ Code:
49
+ ```py
50
+ translated_question = translator(question=question, src_lang="French", tgt_lang="English")
51
+ print(f"The translated question is {translated_question}.")
52
+ answer = image_qa(image=image, question=translated_question)
53
+ final_answer(f"The answer is {answer}")
54
+ ```<end_code>
55
+
56
+ ---
57
+ Task:
58
+ In a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.
59
+ What does he say was the consequence of Einstein learning too much math on his creativity, in one word?
60
+
61
+ Thought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.
62
+ Code:
63
+ ```py
64
+ pages = search(query="1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein")
65
+ print(pages)
66
+ ```<end_code>
67
+ Observation:
68
+ No result found for query "1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein".
69
+
70
+ Thought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.
71
+ Code:
72
+ ```py
73
+ pages = search(query="1979 interview Stanislaus Ulam")
74
+ print(pages)
75
+ ```<end_code>
76
+ Observation:
77
+ Found 6 pages:
78
+ [Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)
79
+
80
+ [Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)
81
+
82
+ (truncated)
83
+
84
+ Thought: I will read the first 2 pages to know more.
85
+ Code:
86
+ ```py
87
+ for url in ["https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/", "https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/"]:
88
+ whole_page = visit_webpage(url)
89
+ print(whole_page)
90
+ print("\n" + "="*80 + "\n") # Print separator between pages
91
+ ```<end_code>
92
+ Observation:
93
+ Manhattan Project Locations:
94
+ Los Alamos, NM
95
+ Stanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at
96
+ (truncated)
97
+
98
+ Thought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: "He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity." Let's answer in one word.
99
+ Code:
100
+ ```py
101
+ final_answer("diminished")
102
+ ```<end_code>
103
+
104
+ ---
105
+ Task: "Which city has the highest population: Guangzhou or Shanghai?"
106
+
107
+ Thought: I need to get the populations for both cities and compare them: I will use the tool `search` to get the population of both cities.
108
+ Code:
109
+ ```py
110
+ for city in ["Guangzhou", "Shanghai"]:
111
+ print(f"Population {city}:", search(f"{city} population")
112
+ ```<end_code>
113
+ Observation:
114
+ Population Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']
115
+ Population Shanghai: '26 million (2019)'
116
+
117
+ Thought: Now I know that Shanghai has the highest population.
118
+ Code:
119
+ ```py
120
+ final_answer("Shanghai")
121
+ ```<end_code>
122
+
123
+ ---
124
+ Task: "What is the current age of the pope, raised to the power 0.36?"
125
+
126
+ Thought: I will use the tool `wiki` to get the age of the pope, and confirm that with a web search.
127
+ Code:
128
+ ```py
129
+ pope_age_wiki = wiki(query="current pope age")
130
+ print("Pope age as per wikipedia:", pope_age_wiki)
131
+ pope_age_search = web_search(query="current pope age")
132
+ print("Pope age as per google search:", pope_age_search)
133
+ ```<end_code>
134
+ Observation:
135
+ Pope age: "The pope Francis is currently 88 years old."
136
+
137
+ Thought: I know that the pope is 88 years old. Let's compute the result using python code.
138
+ Code:
139
+ ```py
140
+ pope_current_age = 88 ** 0.36
141
+ final_answer(pope_current_age)
142
+ ```<end_code>
143
+
144
+ Above example were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools:
145
+ {%- for tool in tools.values() %}
146
+ - {{ tool.name }}: {{ tool.description }}
147
+ Takes inputs: {{tool.inputs}}
148
+ Returns an output of type: {{tool.output_type}}
149
+ {%- endfor %}
150
+
151
+ {%- if managed_agents and managed_agents.values() | list %}
152
+ You can also give tasks to team members.
153
+ Calling a team member works the same as for calling a tool: simply, the only argument you can give in the call is 'task', a long string explaining your task.
154
+ Given that this team member is a real human, you should be very verbose in your task.
155
+ Here is a list of the team members that you can call:
156
+ {%- for agent in managed_agents.values() %}
157
+ - {{ agent.name }}: {{ agent.description }}
158
+ {%- endfor %}
159
+ {%- else %}
160
+ {%- endif %}
161
+
162
+ Here are the rules you should always follow to solve your task:
163
+ 1. Always provide a 'Thought:' sequence, and a 'Code:\n```py' sequence ending with '```<end_code>' sequence, else you will fail.
164
+ 2. Use only variables that you have defined!
165
+ 3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in 'answer = wiki({'query': "What is the place where James Bond lives?"})', but use the arguments directly as in 'answer = wiki(query="What is the place where James Bond lives?")'.
166
+ 4. Take care to not chain too many sequential tool calls in the same code block, especially when the output format is unpredictable. For instance, a call to search has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block.
167
+ 5. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters.
168
+ 6. Don't name any new variable with the same name as a tool: for instance don't name a variable 'final_answer'.
169
+ 7. Never create any notional variables in our code, as having these in your logs will derail you from the true variables.
170
+ 8. You can use imports in your code, but only from the following list of modules: {{authorized_imports}}
171
+ 9. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.
172
+ 10. Don't give up! You're in charge of solving the task, not providing directions to solve it.
173
+
174
+ Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.
175
+ "planning":
176
+ "initial_facts": |-
177
+ Below I will present you a task.
178
+
179
+ You will now build a comprehensive preparatory survey of which facts we have at our disposal and which ones we still need.
180
+ To do so, you will have to read the task and identify things that must be discovered in order to successfully complete it.
181
+ Don't make any assumptions. For each item, provide a thorough reasoning. Here is how you will structure this survey:
182
+
183
+ ---
184
+ ### 1. Facts given in the task
185
+ List here the specific facts given in the task that could help you (there might be nothing here).
186
+
187
+ ### 2. Facts to look up
188
+ List here any facts that we may need to look up.
189
+ Also list where to find each of these, for instance a website, a file... - maybe the task contains some sources that you should re-use here.
190
+
191
+ ### 3. Facts to derive
192
+ List here anything that we want to derive from the above by logical reasoning, for instance computation or simulation.
193
+
194
+ Keep in mind that "facts" will typically be specific names, dates, values, etc. Your answer should use the below headings:
195
+ ### 1. Facts given in the task
196
+ ### 2. Facts to look up
197
+ ### 3. Facts to derive
198
+ Do not add anything else.
199
+ "initial_plan": |-
200
+ You are a world expert at making efficient plans to solve any task using a set of carefully crafted tools.
201
+
202
+ Now for the given task, develop a step-by-step high-level plan taking into account the above inputs and list of facts.
203
+ This plan should involve individual tasks based on the available tools, that if executed correctly will yield the correct answer.
204
+ Do not skip steps, do not add any superfluous steps. Only write the high-level plan, DO NOT DETAIL INDIVIDUAL TOOL CALLS.
205
+ After writing the final step of the plan, write the '\n<end_plan>' tag and stop there.
206
+
207
+ Here is your task:
208
+
209
+ Task:
210
+ ```
211
+ {{task}}
212
+ ```
213
+ You can leverage these tools:
214
+ {%- for tool in tools.values() %}
215
+ - {{ tool.name }}: {{ tool.description }}
216
+ Takes inputs: {{tool.inputs}}
217
+ Returns an output of type: {{tool.output_type}}
218
+ {%- endfor %}
219
+
220
+ {%- if managed_agents and managed_agents.values() | list %}
221
+ You can also give tasks to team members.
222
+ Calling a team member works the same as for calling a tool: simply, the only argument you can give in the call is 'request', a long string explaining your request.
223
+ Given that this team member is a real human, you should be very verbose in your request.
224
+ Here is a list of the team members that you can call:
225
+ {%- for agent in managed_agents.values() %}
226
+ - {{ agent.name }}: {{ agent.description }}
227
+ {%- endfor %}
228
+ {%- else %}
229
+ {%- endif %}
230
+
231
+ List of facts that you know:
232
+ ```
233
+ {{answer_facts}}
234
+ ```
235
+
236
+ Now begin! Write your plan below.
237
+ "update_facts_pre_messages": |-
238
+ You are a world expert at gathering known and unknown facts based on a conversation.
239
+ Below you will find a task, and a history of attempts made to solve the task. You will have to produce a list of these:
240
+ ### 1. Facts given in the task
241
+ ### 2. Facts that we have learned
242
+ ### 3. Facts still to look up
243
+ ### 4. Facts still to derive
244
+ Find the task and history below:
245
+ "update_facts_post_messages": |-
246
+ Earlier we've built a list of facts.
247
+ But since in your previous steps you may have learned useful new facts or invalidated some false ones.
248
+ Please update your list of facts based on the previous history, and provide these headings:
249
+ ### 1. Facts given in the task
250
+ ### 2. Facts that we have learned
251
+ ### 3. Facts still to look up
252
+ ### 4. Facts still to derive
253
+
254
+ Now write your new list of facts below.
255
+ "update_plan_pre_messages": |-
256
+ You are a world expert at making efficient plans to solve any task using a set of carefully crafted tools.
257
+
258
+ You have been given a task:
259
+ ```
260
+ {{task}}
261
+ ```
262
+
263
+ Find below the record of what has been tried so far to solve it. Then you will be asked to make an updated plan to solve the task.
264
+ If the previous tries so far have met some success, you can make an updated plan based on these actions.
265
+ If you are stalled, you can make a completely new plan starting from scratch.
266
+ "update_plan_post_messages": |-
267
+ You're still working towards solving this task:
268
+ ```
269
+ {{task}}
270
+ ```
271
+
272
+ You can leverage these tools:
273
+ {%- for tool in tools.values() %}
274
+ - {{ tool.name }}: {{ tool.description }}
275
+ Takes inputs: {{tool.inputs}}
276
+ Returns an output of type: {{tool.output_type}}
277
+ {%- endfor %}
278
+
279
+ {%- if managed_agents and managed_agents.values() | list %}
280
+ You can also give tasks to team members.
281
+ Calling a team member works the same as for calling a tool: simply, the only argument you can give in the call is 'task'.
282
+ Given that this team member is a real human, you should be very verbose in your task, it should be a long string providing informations as detailed as necessary.
283
+ Here is a list of the team members that you can call:
284
+ {%- for agent in managed_agents.values() %}
285
+ - {{ agent.name }}: {{ agent.description }}
286
+ {%- endfor %}
287
+ {%- else %}
288
+ {%- endif %}
289
+
290
+ Here is the up to date list of facts that you know:
291
+ ```
292
+ {{facts_update}}
293
+ ```
294
+
295
+ Now for the given task, develop a step-by-step high-level plan taking into account the above inputs and list of facts.
296
+ This plan should involve individual tasks based on the available tools, that if executed correctly will yield the correct answer.
297
+ Beware that you have {remaining_steps} steps remaining.
298
+ Do not skip steps, do not add any superfluous steps. Only write the high-level plan, DO NOT DETAIL INDIVIDUAL TOOL CALLS.
299
+ After writing the final step of the plan, write the '\n<end_plan>' tag and stop there.
300
+
301
+ Now write your new plan below.
302
+ "managed_agent":
303
+ "task": |-
304
+ You're a helpful agent named '{{name}}'.
305
+ You have been submitted this task by your manager.
306
+ ---
307
+ Task:
308
+ {{task}}
309
+ ---
310
+ You're helping your manager solve a wider task: so make sure to not provide a one-line answer, but give as much information as possible to give them a clear understanding of the answer.
311
+
312
+ Your final_answer WILL HAVE to contain these parts:
313
+ ### 1. Task outcome (short version):
314
+ ### 2. Task outcome (extremely detailed version):
315
+ ### 3. Additional context (if relevant):
316
+
317
+ Put all these in your final_answer tool, everything that you do not pass as an argument to final_answer will be lost.
318
+ And even if your task resolution is not successful, please return as much context as possible, so that your manager can act upon this feedback.
319
+ "report": |-
320
+ Here is the final answer from your managed agent '{{name}}':
321
+ {{final_answer}}
prompts.yaml CHANGED
@@ -7,140 +7,471 @@
7
  Then in the 'Code:' sequence, you should write the code in simple Python. The code sequence must end with '<end_code>' sequence.
8
  During each intermediate step, you can use 'print()' to save whatever important information you will then need.
9
  These print outputs will then appear in the 'Observation:' field, which will be available as input for the next step.
10
- In the end you have to return a final answer using the `final_answer` tool.
11
 
12
  Here are a few examples using notional tools:
13
  ---
14
- Task: "Generate an image of the oldest person in this document."
15
 
16
- Thought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.
17
  Code:
18
  ```py
19
- answer = document_qa(document=document, question="Who is the oldest person mentioned?")
20
- print(answer)
21
  ```<end_code>
22
- Observation: "The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland."
23
-
24
- Thought: I will now generate an image showcasing the oldest person.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  Code:
26
  ```py
27
- image = image_generator("A portrait of John Doe, a 55-year-old man living in Canada.")
28
- final_answer(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  ```<end_code>
30
 
31
  ---
32
  Task: "What is the result of the following operation: 5 + 3 + 1294.678?"
33
 
34
- Thought: I will use python code to compute the result of the operation and then return the final answer using the `final_answer` tool
35
  Code:
36
  ```py
37
  result = 5 + 3 + 1294.678
38
- final_answer(result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  ```<end_code>
40
-
41
- ---
42
- Task:
43
- "Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.
44
- You have been provided with these additional arguments, that you can access using the keys as variables in your python code:
45
- {'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}"
46
-
47
- Thought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.
48
  Code:
49
  ```py
50
- translated_question = translator(question=question, src_lang="French", tgt_lang="English")
51
- print(f"The translated question is {translated_question}.")
52
- answer = image_qa(image=image, question=translated_question)
53
- final_answer(f"The answer is {answer}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  ```<end_code>
55
 
56
  ---
57
  Task:
58
- In a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.
59
- What does he say was the consequence of Einstein learning too much math on his creativity, in one word?
60
 
61
- Thought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.
62
  Code:
63
  ```py
64
- pages = search(query="1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein")
65
- print(pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  ```<end_code>
67
  Observation:
68
- No result found for query "1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein".
69
-
70
- Thought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.
 
 
71
  Code:
72
  ```py
73
- pages = search(query="1979 interview Stanislaus Ulam")
74
- print(pages)
75
  ```<end_code>
76
- Observation:
77
- Found 6 pages:
78
- [Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)
79
-
80
- [Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)
81
 
82
- (truncated)
 
83
 
84
- Thought: I will read the first 2 pages to know more.
85
  Code:
86
  ```py
87
- for url in ["https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/", "https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/"]:
88
- whole_page = visit_webpage(url)
89
- print(whole_page)
90
- print("\n" + "="*80 + "\n") # Print separator between pages
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  ```<end_code>
92
  Observation:
93
- Manhattan Project Locations:
94
- Los Alamos, NM
95
- Stanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at
96
- (truncated)
97
-
98
- Thought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: "He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity." Let's answer in one word.
99
- Code:
100
- ```py
101
- final_answer("diminished")
102
- ```<end_code>
103
-
104
- ---
105
- Task: "Which city has the highest population: Guangzhou or Shanghai?"
106
 
107
- Thought: I need to get the populations for both cities and compare them: I will use the tool `search` to get the population of both cities.
108
  Code:
109
  ```py
110
- for city in ["Guangzhou", "Shanghai"]:
111
- print(f"Population {city}:", search(f"{city} population")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  ```<end_code>
113
  Observation:
114
- Population Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']
115
- Population Shanghai: '26 million (2019)'
 
116
 
117
- Thought: Now I know that Shanghai has the highest population.
118
  Code:
119
  ```py
120
- final_answer("Shanghai")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  ```<end_code>
122
 
123
  ---
124
- Task: "What is the current age of the pope, raised to the power 0.36?"
125
 
126
- Thought: I will use the tool `wiki` to get the age of the pope, and confirm that with a web search.
127
  Code:
128
  ```py
129
- pope_age_wiki = wiki(query="current pope age")
130
- print("Pope age as per wikipedia:", pope_age_wiki)
131
- pope_age_search = web_search(query="current pope age")
132
- print("Pope age as per google search:", pope_age_search)
133
  ```<end_code>
134
  Observation:
135
- Pope age: "The pope Francis is currently 88 years old."
136
-
137
- Thought: I know that the pope is 88 years old. Let's compute the result using python code.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
  Code:
139
  ```py
140
- pope_current_age = 88 ** 0.36
141
- final_answer(pope_current_age)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  ```<end_code>
143
 
 
144
  Above example were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools:
145
  {%- for tool in tools.values() %}
146
  - {{ tool.name }}: {{ tool.description }}
@@ -170,6 +501,9 @@
170
  8. You can use imports in your code, but only from the following list of modules: {{authorized_imports}}
171
  9. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.
172
  10. Don't give up! You're in charge of solving the task, not providing directions to solve it.
 
 
 
173
 
174
  Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.
175
  "planning":
@@ -318,4 +652,4 @@
318
  And even if your task resolution is not successful, please return as much context as possible, so that your manager can act upon this feedback.
319
  "report": |-
320
  Here is the final answer from your managed agent '{{name}}':
321
- {{final_answer}}
 
7
  Then in the 'Code:' sequence, you should write the code in simple Python. The code sequence must end with '<end_code>' sequence.
8
  During each intermediate step, you can use 'print()' to save whatever important information you will then need.
9
  These print outputs will then appear in the 'Observation:' field, which will be available as input for the next step.
10
+ In the end you have to return a final answer using the `final_answer` tool. Before using `final_answer`, you must validate your Streamlit code using the `validate_final_answer` tool to ensure it's valid. The `final_answer` tool accepts Streamlit code which will be rendered as an interactive web application.
11
 
12
  Here are a few examples using notional tools:
13
  ---
14
+ Task: "Generate a data visualization of monthly sales data for 2023."
15
 
16
+ Thought: I will proceed step by step and use the following tools: `get_sales_data` to fetch the monthly sales data for 2023, then `final_answer` to generate a Streamlit application that visualizes this data.
17
  Code:
18
  ```py
19
+ sales_data = get_sales_data(year=2023)
20
+ print(sales_data)
21
  ```<end_code>
22
+ Observation:
23
+ ```
24
+ {
25
+ 'Jan': 12500,
26
+ 'Feb': 13200,
27
+ 'Mar': 15400,
28
+ 'Apr': 14800,
29
+ 'May': 16700,
30
+ 'Jun': 18900,
31
+ 'Jul': 17300,
32
+ 'Aug': 16500,
33
+ 'Sep': 19200,
34
+ 'Oct': 21500,
35
+ 'Nov': 23400,
36
+ 'Dec': 26800
37
+ }
38
+ ```
39
+
40
+ Thought: Now I will create a Streamlit application to visualize the sales data. I'll first create the code, then validate it before submitting as the final answer.
41
  Code:
42
  ```py
43
+ streamlit_code = """
44
+ import streamlit as st
45
+ import pandas as pd
46
+ import plotly.express as px
47
+
48
+ # Set page title
49
+ st.title('Monthly Sales Data - 2023')
50
+
51
+ # Convert the sales data to a DataFrame
52
+ data = {
53
+ 'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'],
54
+ 'Sales': [12500, 13200, 15400, 14800, 16700, 18900, 17300, 16500, 19200, 21500, 23400, 26800]
55
+ }
56
+
57
+ df = pd.DataFrame(data)
58
+
59
+ # Display the data
60
+ st.subheader('Monthly Sales Data')
61
+ st.dataframe(df)
62
+
63
+ # Create visualizations
64
+ st.subheader('Sales Trend')
65
+ fig = px.line(df, x='Month', y='Sales', markers=True)
66
+ st.plotly_chart(fig, use_container_width=True)
67
+
68
+ st.subheader('Monthly Sales Distribution')
69
+ fig2 = px.bar(df, x='Month', y='Sales')
70
+ st.plotly_chart(fig2, use_container_width=True)
71
+
72
+ # Calculate and display statistics
73
+ st.subheader('Sales Statistics')
74
+ col1, col2, col3 = st.columns(3)
75
+ with col1:
76
+ st.metric("Total Sales", f"${sum(data['Sales']):,}")
77
+ with col2:
78
+ st.metric("Average Monthly Sales", f"${sum(data['Sales'])/12:,.2f}")
79
+ with col3:
80
+ st.metric("Highest Month", f"{df.loc[df['Sales'].idxmax()]['Month']} (${df['Sales'].max():,})")
81
+ """
82
+
83
+ # Validate the Streamlit code before submitting
84
+ validation_result = validate_final_answer(streamlit_code)
85
+ print(validation_result)
86
+ ```<end_code>
87
+ Observation:
88
+ ```
89
+ Answer is valide and can be submitted to final answer.
90
+ ```
91
+
92
+ Thought: The validation was successful, so I can now submit the Streamlit code as the final answer.
93
+ Code:
94
+ ```py
95
+ final_answer(streamlit_code)
96
  ```<end_code>
97
 
98
  ---
99
  Task: "What is the result of the following operation: 5 + 3 + 1294.678?"
100
 
101
+ Thought: I will use python code to compute the result of the operation and then return the final answer using a simple Streamlit application. I'll make sure to validate the code before submitting.
102
  Code:
103
  ```py
104
  result = 5 + 3 + 1294.678
105
+
106
+ streamlit_code = f"""
107
+ import streamlit as st
108
+
109
+ st.title('Mathematical Operation Result')
110
+
111
+ st.write('Operation: 5 + 3 + 1294.678')
112
+ st.success('Result: {result}')
113
+
114
+ # Display the calculation breakdown
115
+ st.subheader('Calculation Breakdown')
116
+ st.write('5 + 3 = 8')
117
+ st.write('8 + 1294.678 = {result}')
118
+ """
119
+
120
+ # Validate the Streamlit code before submitting
121
+ validation_result = validate_final_answer(streamlit_code)
122
+ print(validation_result)
123
  ```<end_code>
124
+ Observation:
125
+ ```
126
+ Answer is valide and can be submitted to final answer.
127
+ ```
128
+
129
+ Thought: The validation was successful, so I can now submit the Streamlit code as the final answer.
 
 
130
  Code:
131
  ```py
132
+ streamlit_code = f"""
133
+ import streamlit as st
134
+
135
+ st.title('Mathematical Operation Result')
136
+
137
+ st.write('Operation: 5 + 3 + 1294.678')
138
+ st.success('Result: {result}')
139
+
140
+ # Display the calculation breakdown
141
+ st.subheader('Calculation Breakdown')
142
+ st.write('5 + 3 = 8')
143
+ st.write('8 + 1294.678 = {result}')
144
+ """
145
+
146
+ # Validate the Streamlit code before submitting
147
+ validation_result = validate_final_answer(streamlit_code)
148
+ print(validation_result)
149
+ ```
150
+ final_answer(streamlit_code)
151
  ```<end_code>
152
 
153
  ---
154
  Task:
155
+ "Create an interactive tool to convert between different temperature units (Celsius, Fahrenheit, and Kelvin)."
 
156
 
157
+ Thought: I will create an interactive Streamlit application that allows users to convert between temperature units. I'll make sure to validate the code before submitting.
158
  Code:
159
  ```py
160
+ streamlit_code = """
161
+ import streamlit as st
162
+
163
+ st.title('Temperature Converter')
164
+
165
+ # Create input fields
166
+ st.subheader('Enter Temperature Value')
167
+ temp_value = st.number_input('Temperature', value=0.0)
168
+
169
+ # Create unit selection
170
+ source_unit = st.selectbox('From Unit', ['Celsius', 'Fahrenheit', 'Kelvin'])
171
+ target_unit = st.selectbox('To Unit', ['Fahrenheit', 'Celsius', 'Kelvin'])
172
+
173
+ # Define conversion functions
174
+ def celsius_to_fahrenheit(c):
175
+ return (c * 9/5) + 32
176
+
177
+ def celsius_to_kelvin(c):
178
+ return c + 273.15
179
+
180
+ def fahrenheit_to_celsius(f):
181
+ return (f - 32) * 5/9
182
+
183
+ def fahrenheit_to_kelvin(f):
184
+ return (f - 32) * 5/9 + 273.15
185
+
186
+ def kelvin_to_celsius(k):
187
+ return k - 273.15
188
+
189
+ def kelvin_to_fahrenheit(k):
190
+ return (k - 273.15) * 9/5 + 32
191
+
192
+ # Create conversion logic
193
+ result = 0
194
+ formula = ""
195
+
196
+ if st.button('Convert'):
197
+ if source_unit == target_unit:
198
+ result = temp_value
199
+ formula = f"{temp_value} {source_unit} = {result} {target_unit}"
200
+ elif source_unit == 'Celsius' and target_unit == 'Fahrenheit':
201
+ result = celsius_to_fahrenheit(temp_value)
202
+ formula = f"{temp_value}°C × (9/5) + 32 = {result}°F"
203
+ elif source_unit == 'Celsius' and target_unit == 'Kelvin':
204
+ result = celsius_to_kelvin(temp_value)
205
+ formula = f"{temp_value}°C + 273.15 = {result}K"
206
+ elif source_unit == 'Fahrenheit' and target_unit == 'Celsius':
207
+ result = fahrenheit_to_celsius(temp_value)
208
+ formula = f"({temp_value}°F - 32) × 5/9 = {result}°C"
209
+ elif source_unit == 'Fahrenheit' and target_unit == 'Kelvin':
210
+ result = fahrenheit_to_kelvin(temp_value)
211
+ formula = f"({temp_value}°F - 32) × 5/9 + 273.15 = {result}K"
212
+ elif source_unit == 'Kelvin' and target_unit == 'Celsius':
213
+ result = kelvin_to_celsius(temp_value)
214
+ formula = f"{temp_value}K - 273.15 = {result}°C"
215
+ elif source_unit == 'Kelvin' and target_unit == 'Fahrenheit':
216
+ result = kelvin_to_fahrenheit(temp_value)
217
+ formula = f"({temp_value}K - 273.15) × 9/5 + 32 = {result}°F"
218
+
219
+ # Display result
220
+ st.success(f"Result: {result:.2f} {target_unit}")
221
+ st.info(f"Formula: {formula}")
222
+
223
+ # Display information about temperature scales
224
+ with st.expander("About Temperature Scales"):
225
+ st.write("**Celsius (°C)**: Water freezes at 0°C and boils at 100°C at standard atmospheric pressure.")
226
+ st.write("**Fahrenheit (°F)**: Water freezes at 32°F and boils at 212°F at standard atmospheric pressure.")
227
+ st.write("**Kelvin (K)**: Absolute zero is 0K, which equals -273.15°C or -459.67°F.")
228
+ """
229
+
230
+ # Validate the Streamlit code before submitting
231
+ validation_result = validate_final_answer(streamlit_code)
232
+ print(validation_result)
233
  ```<end_code>
234
  Observation:
235
+ ```
236
+ Answer is valide and can be submitted to final answer.
237
+ ```
238
+
239
+ Thought: The validation was successful, so I can now submit the Streamlit code as the final answer.
240
  Code:
241
  ```py
242
+ final_answer(streamlit_code)
 
243
  ```<end_code>
 
 
 
 
 
244
 
245
+ ---
246
+ Task: "Create a simple calculator for addition and subtraction."
247
 
248
+ Thought: I'll create a Streamlit application that functions as a simple calculator for addition and subtraction operations.
249
  Code:
250
  ```py
251
+ # First attempt with a syntax error
252
+ streamlit_code = """
253
+ import streamlit as st
254
+
255
+ st.title('Simple Calculator')
256
+
257
+ # Get user inputs
258
+ num1 = st.number_input('Enter first number', value=0.0)
259
+ num2 = st.number_input('Enter second number', value=0.0)
260
+ operation = st.selectbox('Select operation', ['Addition', 'Subtraction'])
261
+
262
+ # Calculate result when button is pressed
263
+ if st.button('Calculate'):
264
+ if operation == 'Addition':
265
+ result = num1 + num2
266
+ st.success(f'Result: {num1} + {num2} = {result}')
267
+ elif operation == 'Subtraction'
268
+ result = num1 - num2 # Missing colon after condition
269
+ st.success(f'Result: {num1} - {num2} = {result}')
270
+ """
271
+
272
+ # Validate the Streamlit code
273
+ validation_result = validate_final_answer(streamlit_code)
274
+ print(validation_result)
275
  ```<end_code>
276
  Observation:
277
+ ```
278
+ Invalid answer : name 'e' is not defined
279
+ ```
 
 
 
 
 
 
 
 
 
 
280
 
281
+ Thought: The validation failed because there's a syntax error in my code. I'm missing a colon after the 'elif' condition. Let me fix the code and validate it again.
282
  Code:
283
  ```py
284
+ # Fixed version with correct syntax
285
+ streamlit_code = """
286
+ import streamlit as st
287
+
288
+ st.title('Simple Calculator')
289
+
290
+ # Get user inputs
291
+ num1 = st.number_input('Enter first number', value=0.0)
292
+ num2 = st.number_input('Enter second number', value=0.0)
293
+ operation = st.selectbox('Select operation', ['Addition', 'Subtraction'])
294
+
295
+ # Calculate result when button is pressed
296
+ if st.button('Calculate'):
297
+ if operation == 'Addition':
298
+ result = num1 + num2
299
+ st.success(f'Result: {num1} + {num2} = {result}')
300
+ elif operation == 'Subtraction': # Added the missing colon
301
+ result = num1 - num2
302
+ st.success(f'Result: {num1} - {num2} = {result}')
303
+ """
304
+
305
+ # Validate the fixed Streamlit code
306
+ validation_result = validate_final_answer(streamlit_code)
307
+ print(validation_result)
308
  ```<end_code>
309
  Observation:
310
+ ```
311
+ Answer is valide and can be submitted to final answer.
312
+ ```
313
 
314
+ Thought: The validation is now successful after fixing the syntax error. I can now submit the corrected Streamlit code as the final answer.
315
  Code:
316
  ```py
317
+ import streamlit as st
318
+
319
+ st.title('Simple Calculator')
320
+
321
+ # Get user inputs
322
+ num1 = st.number_input('Enter first number', value=0.0)
323
+ num2 = st.number_input('Enter second number', value=0.0)
324
+ operation = st.selectbox('Select operation', ['Addition', 'Subtraction'])
325
+
326
+ # Calculate result when button is pressed
327
+ if st.button('Calculate'):
328
+ if operation == 'Addition':
329
+ result = num1 + num2
330
+ st.success(f'Result: {num1} + {num2} = {result}')
331
+ elif operation == 'Subtraction': # Added the missing colon
332
+ result = num1 - num2
333
+ st.success(f'Result: {num1} - {num2} = {result}')
334
+ """
335
+ final_answer(streamlit_code)
336
  ```<end_code>
337
 
338
  ---
339
+ Task: "Find the population of the three most populous cities in Japan and create a visualization."
340
 
341
+ Thought: I need to find the populations of the most populous cities in Japan and create a visualization. I'll use the search tool for this.
342
  Code:
343
  ```py
344
+ search_results = search(query="most populous cities in Japan population")
345
+ print(search_results)
 
 
346
  ```<end_code>
347
  Observation:
348
+ "The most populous cities in Japan are:
349
+ 1. Tokyo: 13.96 million
350
+ 2. Yokohama: 3.76 million
351
+ 3. Osaka: 2.72 million
352
+ 4. Nagoya: 2.33 million
353
+ 5. Sapporo: 1.97 million"
354
+
355
+ Thought: Now I have the population data for the most populous cities in Japan. I'll create a Streamlit application to visualize this data.
356
+ Code:
357
+ ```py
358
+ streamlit_code = """
359
+ import streamlit as st
360
+ import pandas as pd
361
+ import plotly.express as px
362
+ import matplotlib.pyplot as plt
363
+
364
+ st.title('Most Populous Cities in Japan')
365
+
366
+ # Create DataFrame
367
+ data = {
368
+ 'City': ['Tokyo', 'Yokohama', 'Osaka', 'Nagoya', 'Sapporo'],
369
+ 'Population (millions)': [13.96, 3.76, 2.72, 2.33, 1.97]
370
+ }
371
+ df = pd.DataFrame(data)
372
+
373
+ # Display data table
374
+ st.subheader('Population Data')
375
+ st.dataframe(df)
376
+
377
+ # Create bar chart
378
+ st.subheader('Population Comparison')
379
+ fig = px.bar(df, x='City', y='Population (millions)',
380
+ color='Population (millions)',
381
+ color_continuous_scale='Viridis',
382
+ text_auto=True)
383
+ fig.update_traces(texttemplate='%{text:.2f}M', textposition='outside')
384
+ st.plotly_chart(fig, use_container_width=True)
385
+
386
+ # Create pie chart
387
+ st.subheader('Population Distribution')
388
+ fig2 = px.pie(df, values='Population (millions)', names='City', hole=0.4)
389
+ fig2.update_traces(textinfo='percent+label')
390
+ st.plotly_chart(fig2, use_container_width=True)
391
+
392
+ # Show interesting facts
393
+ st.subheader('Did you know?')
394
+ st.info('Tokyo is the most populous metropolitan area in the world with almost 14 million people in the city proper.')
395
+ st.info('The Tokyo metropolitan area (including surrounding prefectures) has over 37 million people.')
396
+
397
+ # Add a map
398
+ st.subheader('Map of Major Japanese Cities')
399
+ japan_map_data = {
400
+ 'City': ['Tokyo', 'Yokohama', 'Osaka', 'Nagoya', 'Sapporo'],
401
+ 'lat': [35.6762, 35.4437, 34.6937, 35.1815, 43.0618],
402
+ 'lon': [139.6503, 139.6380, 135.5023, 136.9066, 141.3545],
403
+ 'Population (millions)': [13.96, 3.76, 2.72, 2.33, 1.97]
404
+ }
405
+ map_df = pd.DataFrame(japan_map_data)
406
+ st.map(map_df, latitude='lat', longitude='lon', size='Population (millions)')
407
+ """
408
+
409
+ # Validate the Streamlit code before submitting
410
+ validation_result = validate_final_answer(streamlit_code)
411
+ print(validation_result)
412
+ ```<end_code>
413
+ Observation:
414
+ ```
415
+ Answer is valide and can be submitted to final answer.
416
+ ```
417
+
418
+ Thought: The validation was successful, so I can now submit the Streamlit code as the final answer.
419
  Code:
420
  ```py
421
+ streamlit_code = """
422
+ import streamlit as st
423
+ import pandas as pd
424
+ import plotly.express as px
425
+ import matplotlib.pyplot as plt
426
+
427
+ st.title('Most Populous Cities in Japan')
428
+
429
+ # Create DataFrame
430
+ data = {
431
+ 'City': ['Tokyo', 'Yokohama', 'Osaka', 'Nagoya', 'Sapporo'],
432
+ 'Population (millions)': [13.96, 3.76, 2.72, 2.33, 1.97]
433
+ }
434
+ df = pd.DataFrame(data)
435
+
436
+ # Display data table
437
+ st.subheader('Population Data')
438
+ st.dataframe(df)
439
+
440
+ # Create bar chart
441
+ st.subheader('Population Comparison')
442
+ fig = px.bar(df, x='City', y='Population (millions)',
443
+ color='Population (millions)',
444
+ color_continuous_scale='Viridis',
445
+ text_auto=True)
446
+ fig.update_traces(texttemplate='%{text:.2f}M', textposition='outside')
447
+ st.plotly_chart(fig, use_container_width=True)
448
+
449
+ # Create pie chart
450
+ st.subheader('Population Distribution')
451
+ fig2 = px.pie(df, values='Population (millions)', names='City', hole=0.4)
452
+ fig2.update_traces(textinfo='percent+label')
453
+ st.plotly_chart(fig2, use_container_width=True)
454
+
455
+ # Show interesting facts
456
+ st.subheader('Did you know?')
457
+ st.info('Tokyo is the most populous metropolitan area in the world with almost 14 million people in the city proper.')
458
+ st.info('The Tokyo metropolitan area (including surrounding prefectures) has over 37 million people.')
459
+
460
+ # Add a map
461
+ st.subheader('Map of Major Japanese Cities')
462
+ japan_map_data = {
463
+ 'City': ['Tokyo', 'Yokohama', 'Osaka', 'Nagoya', 'Sapporo'],
464
+ 'lat': [35.6762, 35.4437, 34.6937, 35.1815, 43.0618],
465
+ 'lon': [139.6503, 139.6380, 135.5023, 136.9066, 141.3545],
466
+ 'Population (millions)': [13.96, 3.76, 2.72, 2.33, 1.97]
467
+ }
468
+ map_df = pd.DataFrame(japan_map_data)
469
+ st.map(map_df, latitude='lat', longitude='lon', size='Population (millions)')
470
+ """
471
+ final_answer(streamlit_code)
472
  ```<end_code>
473
 
474
+
475
  Above example were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools:
476
  {%- for tool in tools.values() %}
477
  - {{ tool.name }}: {{ tool.description }}
 
501
  8. You can use imports in your code, but only from the following list of modules: {{authorized_imports}}
502
  9. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.
503
  10. Don't give up! You're in charge of solving the task, not providing directions to solve it.
504
+ 11. When using the final_answer tool, provide Streamlit code as an argument. This code will be rendered as an interactive web application.
505
+ 12. Always use the validate_final_answer tool before using final_answer to ensure your Streamlit code is valid.
506
+ 13. When writing Streamlit code for the final_answer, make sure to include all necessary imports and provide a complete, standalone application.
507
 
508
  Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.
509
  "planning":
 
652
  And even if your task resolution is not successful, please return as much context as possible, so that your manager can act upon this feedback.
653
  "report": |-
654
  Here is the final answer from your managed agent '{{name}}':
655
+ {{final_answer}}
requirements.txt CHANGED
@@ -6,4 +6,7 @@ pydantic>=2.4.2
6
  openai>=1.2.0
7
  gradio>=5.15.0
8
  pytz>=2023.3
9
- pyyaml>=6.0
 
 
 
 
6
  openai>=1.2.0
7
  gradio>=5.15.0
8
  pytz>=2023.3
9
+ pyyaml>=6.0
10
+ plotly>=5.18.0
11
+ pandas>=2.0.0
12
+ numpy>=1.24.0
streamlit_app.py CHANGED
@@ -4,7 +4,9 @@ import sys
4
  import yaml
5
  import datetime
6
  import pytz
7
- from typing import List, Dict, Any
 
 
8
 
9
  # Ajout du répertoire courant au chemin Python pour importer les modules
10
  sys.path.append(os.path.dirname(os.path.abspath(__file__)))
@@ -13,11 +15,26 @@ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
13
  from smolagents import CodeAgent
14
  from smolagents.models import OpenAIServerModel, HfApiModel
15
  from tools.final_answer import FinalAnswerTool
 
16
  from tools.visit_webpage import VisitWebpageTool
17
  from tools.web_search import DuckDuckGoSearchTool
18
  from tools.shell_tool import ShellCommandTool
19
  from tools.create_file_tool import CreateFileTool
20
  from tools.modify_file_tool import ModifyFileTool
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  # Configuration de la page Streamlit
23
  st.set_page_config(
@@ -39,15 +56,16 @@ def initialize_agent(model_type="openai_server", model_config=None):
39
  # Configuration par défaut pour OpenAIServerModel
40
  if model_config is None:
41
  model_config = {
42
- "api_base": "http://192.168.1.141:1234/v1",
43
- "model_id": "Qwen/Qwen2.5-Coder-14B-Instruct-GGUF",
44
- "api_key": "sk-dummy-key"
45
  }
46
 
47
  model = OpenAIServerModel(
48
  api_base=model_config["api_base"],
49
  model_id=model_config["model_id"],
50
- api_key=model_config["api_key"]
 
51
  )
52
 
53
  elif model_type == "hf_api":
@@ -92,27 +110,27 @@ def initialize_agent(model_type="openai_server", model_config=None):
92
  st.error("Impossible de charger prompts.yaml. Utilisation des prompts par défaut.")
93
  prompt_templates = None
94
 
95
- # Initialisation des outils
96
- final_answer = FinalAnswerTool()
97
 
98
  # Création de l'agent avec les mêmes outils que dans app.py
99
  agent = CodeAgent(
100
  model=model,
101
  tools=[
102
- final_answer,
 
103
  DuckDuckGoSearchTool(),
104
  VisitWebpageTool(),
105
  ShellCommandTool(),
106
  CreateFileTool(),
107
  ModifyFileTool()
108
  ],
109
- max_steps=6,
110
  verbosity_level=1,
111
  grammar=None,
112
  planning_interval=None,
113
  name=None,
114
  description=None,
115
- prompt_templates=prompt_templates
 
116
  )
117
 
118
  return agent
@@ -134,14 +152,69 @@ def format_step_message(step, is_final=False):
134
 
135
  if hasattr(step, "error") and step.error:
136
  # Afficher les erreurs
137
- return f"**Erreur :** {step.error}"
138
 
139
  # Cas par défaut
140
  return str(step)
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  def process_user_input(agent, user_input):
143
  """Traite l'entrée utilisateur avec l'agent et renvoie les résultats étape par étape"""
144
 
 
 
 
 
 
145
  # Vérification de la connexion au serveur LLM
146
  try:
147
  # Exécution de l'agent et capture des étapes
@@ -179,7 +252,12 @@ def process_user_input(agent, user_input):
179
  # Afficher la réponse finale
180
  if final_step:
181
  final_answer = format_step_message(final_step, is_final=True)
182
- st.markdown(f"## Réponse Finale\n\n{final_answer}")
 
 
 
 
 
183
 
184
  return final_step
185
  except Exception as e:
@@ -213,17 +291,17 @@ def main():
213
  st.subheader("Configuration OpenAI Server")
214
  model_config["api_base"] = st.text_input(
215
  "URL du serveur",
216
- value="http://192.168.1.141:1234/v1",
217
  help="Adresse du serveur OpenAI compatible"
218
  )
219
  model_config["model_id"] = st.text_input(
220
  "ID du modèle",
221
- value="Qwen/Qwen2.5-Coder-14B-Instruct-GGUF",
222
  help="Identifiant du modèle local"
223
  )
224
  model_config["api_key"] = st.text_input(
225
  "Clé API",
226
- value="sk-dummy-key",
227
  type="password",
228
  help="Clé API pour le serveur (dummy pour LMStudio)"
229
  )
@@ -321,7 +399,80 @@ def main():
321
  # Traiter la demande avec l'agent
322
  with st.chat_message("assistant"):
323
  response = process_user_input(st.session_state.agent, prompt)
324
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
  if response and hasattr(response, "model_output"):
326
  # Ajouter la réponse à l'historique
327
  st.session_state.messages.append({"role": "assistant", "content": response.model_output})
@@ -344,6 +495,7 @@ def main():
344
  - Visite de pages web
345
  - Exécution de commandes shell
346
  - Création et modification de fichiers
 
347
 
348
  ### Configuration
349
  Utilisez les options ci-dessus pour configurer le modèle de langage.
@@ -353,6 +505,17 @@ def main():
353
  - Assurez-vous que toutes les dépendances sont installées via `pip install -r requirements.txt`.
354
  """)
355
 
 
 
 
 
 
 
 
 
 
 
 
356
  # Afficher l'heure actuelle dans différents fuseaux horaires
357
  st.subheader("Heure actuelle")
358
  selected_timezone = st.selectbox(
 
4
  import yaml
5
  import datetime
6
  import pytz
7
+ import pandas as pd
8
+ import numpy as np
9
+ from typing import List, Dict, Any, Optional, Union, Tuple
10
 
11
  # Ajout du répertoire courant au chemin Python pour importer les modules
12
  sys.path.append(os.path.dirname(os.path.abspath(__file__)))
 
15
  from smolagents import CodeAgent
16
  from smolagents.models import OpenAIServerModel, HfApiModel
17
  from tools.final_answer import FinalAnswerTool
18
+ from tools.validate_final_answer import ValidateFinalAnswer
19
  from tools.visit_webpage import VisitWebpageTool
20
  from tools.web_search import DuckDuckGoSearchTool
21
  from tools.shell_tool import ShellCommandTool
22
  from tools.create_file_tool import CreateFileTool
23
  from tools.modify_file_tool import ModifyFileTool
24
+ from phoenix.otel import register
25
+ from openinference.instrumentation.smolagents import SmolagentsInstrumentor
26
+ from smolagents.memory import ToolCall
27
+ # register()
28
+ # SmolagentsInstrumentor().instrument()
29
+
30
+ # Import des fonctions de visualisation
31
+ from visualizations import (
32
+ create_line_chart,
33
+ create_bar_chart,
34
+ create_scatter_plot,
35
+ detect_visualization_request,
36
+ generate_sample_data
37
+ )
38
 
39
  # Configuration de la page Streamlit
40
  st.set_page_config(
 
56
  # Configuration par défaut pour OpenAIServerModel
57
  if model_config is None:
58
  model_config = {
59
+ "api_base": "https://openrouter.ai/api/v1",
60
+ "model_id": "google/gemini-2.0-pro-exp-02-05:free",
61
+ "api_key": "nop"
62
  }
63
 
64
  model = OpenAIServerModel(
65
  api_base=model_config["api_base"],
66
  model_id=model_config["model_id"],
67
+ api_key=model_config["api_key"],
68
+ max_tokens=12000
69
  )
70
 
71
  elif model_type == "hf_api":
 
110
  st.error("Impossible de charger prompts.yaml. Utilisation des prompts par défaut.")
111
  prompt_templates = None
112
 
 
 
113
 
114
  # Création de l'agent avec les mêmes outils que dans app.py
115
  agent = CodeAgent(
116
  model=model,
117
  tools=[
118
+ FinalAnswerTool(),
119
+ ValidateFinalAnswer(),
120
  DuckDuckGoSearchTool(),
121
  VisitWebpageTool(),
122
  ShellCommandTool(),
123
  CreateFileTool(),
124
  ModifyFileTool()
125
  ],
126
+ max_steps=20,
127
  verbosity_level=1,
128
  grammar=None,
129
  planning_interval=None,
130
  name=None,
131
  description=None,
132
+ prompt_templates=prompt_templates,
133
+ additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn", "plotly", "requests", "yaml"]
134
  )
135
 
136
  return agent
 
152
 
153
  if hasattr(step, "error") and step.error:
154
  # Afficher les erreurs
155
+ return f"**Erreur nooo:** {step.error}"
156
 
157
  # Cas par défaut
158
  return str(step)
159
 
160
+ def process_visualization_request(user_input: str) -> Tuple[bool, Optional[st.delta_generator.DeltaGenerator]]:
161
+ """
162
+ Process a visualization request from the user.
163
+
164
+ Args:
165
+ user_input: The user's input message.
166
+
167
+ Returns:
168
+ A tuple containing:
169
+ - Boolean indicating if a visualization was processed
170
+ - The Streamlit delta generator if a visualization was created, None otherwise
171
+ """
172
+ # Detect if this is a visualization request
173
+ viz_info = detect_visualization_request(user_input)
174
+
175
+ if not viz_info['is_visualization'] or not viz_info['chart_type']:
176
+ return False, None
177
+
178
+ # Extract information from the request
179
+ chart_type = viz_info['chart_type']
180
+ data_description = viz_info['data_description']
181
+ parameters = viz_info['parameters']
182
+
183
+ # Generate sample data based on the description and chart type
184
+ data = generate_sample_data(data_description, chart_type)
185
+
186
+ # Set default parameters if not provided
187
+ title = parameters.get('title', f"{chart_type.capitalize()} Chart" + (f" of {data_description}" if data_description else ""))
188
+ x_label = parameters.get('x_label', data.columns[0] if len(data.columns) > 0 else "X-Axis")
189
+ y_label = parameters.get('y_label', data.columns[1] if len(data.columns) > 1 else "Y-Axis")
190
+
191
+ # Create the appropriate chart
192
+ fig = None
193
+ if chart_type == 'line':
194
+ fig = create_line_chart(data, title=title, x_label=x_label, y_label=y_label)
195
+ elif chart_type == 'bar':
196
+ fig = create_bar_chart(data, title=title, x_label=x_label, y_label=y_label)
197
+ elif chart_type == 'scatter':
198
+ fig = create_scatter_plot(data, title=title, x_label=x_label, y_label=y_label)
199
+
200
+ if fig:
201
+ # Create a container for the visualization
202
+ viz_container = st.container()
203
+ with viz_container:
204
+ st.plotly_chart(fig, use_container_width=True)
205
+
206
+ return True, viz_container
207
+
208
+ return False, None
209
+
210
  def process_user_input(agent, user_input):
211
  """Traite l'entrée utilisateur avec l'agent et renvoie les résultats étape par étape"""
212
 
213
+ # Check if this is a visualization request
214
+ is_viz_request, viz_container = process_visualization_request(user_input)
215
+
216
+ # If it's a visualization request, we'll still run the agent but we've already displayed the chart
217
+
218
  # Vérification de la connexion au serveur LLM
219
  try:
220
  # Exécution de l'agent et capture des étapes
 
252
  # Afficher la réponse finale
253
  if final_step:
254
  final_answer = format_step_message(final_step, is_final=True)
255
+
256
+ # If this was a visualization request, add a note about the visualization
257
+ if is_viz_request:
258
+ final_answer += "\n\n*Une visualisation a été générée en fonction de votre demande.*"
259
+
260
+ return (final_answer, True)
261
 
262
  return final_step
263
  except Exception as e:
 
291
  st.subheader("Configuration OpenAI Server")
292
  model_config["api_base"] = st.text_input(
293
  "URL du serveur",
294
+ value="https://openrouter.ai/api/v1",
295
  help="Adresse du serveur OpenAI compatible"
296
  )
297
  model_config["model_id"] = st.text_input(
298
  "ID du modèle",
299
+ value="google/gemini-2.0-pro-exp-02-05:free",
300
  help="Identifiant du modèle local"
301
  )
302
  model_config["api_key"] = st.text_input(
303
  "Clé API",
304
+ value="nop",
305
  type="password",
306
  help="Clé API pour le serveur (dummy pour LMStudio)"
307
  )
 
399
  # Traiter la demande avec l'agent
400
  with st.chat_message("assistant"):
401
  response = process_user_input(st.session_state.agent, prompt)
402
+ if response is not None and response[1] == True:
403
+ with st.container(border = True):
404
+ def secure_imports(code_str):
405
+ """
406
+ Process Python code to replace import statements with exec-wrapped versions.
407
+
408
+ Args:
409
+ code_str (str): The Python code string to process
410
+
411
+ Returns:
412
+ str: The processed code with import statements wrapped in exec()
413
+ """
414
+ import re
415
+
416
+ # Define regex patterns for both import styles
417
+ # Pattern for 'import module' and 'import module as alias'
418
+ import_pattern = r'^(\s*)import\s+([^\n]+)'
419
+
420
+ # Pattern for 'from module import something'
421
+ from_import_pattern = r'^(\s*)from\s+([^\n]+)\s+import\s+([^\n]+)'
422
+
423
+ lines = code_str.split('\n')
424
+ result_lines = []
425
+
426
+ i = 0
427
+ while i < len(lines):
428
+ line = lines[i]
429
+
430
+ # Check for multiline imports with parentheses
431
+ if re.search(r'import\s+\(', line) or re.search(r'from\s+.+\s+import\s+\(', line):
432
+ # Collect all lines until closing parenthesis
433
+ start_line = i
434
+ multiline_import = [line]
435
+ i += 1
436
+
437
+ while i < len(lines) and ')' not in lines[i]:
438
+ multiline_import.append(lines[i])
439
+ i += 1
440
+
441
+ if i < len(lines): # Add the closing line with parenthesis
442
+ multiline_import.append(lines[i])
443
+
444
+ # Join the multiline import and wrap it with exec
445
+ indentation = re.match(r'^(\s*)', multiline_import[0]).group(1)
446
+ multiline_str = '\n'.join(multiline_import)
447
+ result_lines.append(f'{indentation}exec("""\n{multiline_str}\n""")')
448
+
449
+ else:
450
+ # Handle single line imports
451
+ import_match = re.match(import_pattern, line)
452
+ from_import_match = re.match(from_import_pattern, line)
453
+
454
+ if import_match:
455
+ indentation = import_match.group(1)
456
+ import_stmt = line[len(indentation):] # Remove indentation from statement
457
+ result_lines.append(f'{indentation}exec("{import_stmt}")')
458
+
459
+ elif from_import_match:
460
+ indentation = from_import_match.group(1)
461
+ from_import_stmt = line[len(indentation):] # Remove indentation from statement
462
+ result_lines.append(f'{indentation}exec("{from_import_stmt}")')
463
+
464
+ else:
465
+ # Not an import statement, keep as is
466
+ result_lines.append(line)
467
+
468
+ i += 1
469
+
470
+ return '\n'.join(result_lines)
471
+
472
+ # Process response[0] to secure import statements
473
+ # processed_response = secure_imports(response[0])
474
+ # eval(processed_response)
475
+ exec(response[0])
476
  if response and hasattr(response, "model_output"):
477
  # Ajouter la réponse à l'historique
478
  st.session_state.messages.append({"role": "assistant", "content": response.model_output})
 
495
  - Visite de pages web
496
  - Exécution de commandes shell
497
  - Création et modification de fichiers
498
+ - Visualisations de données (nouveauté!)
499
 
500
  ### Configuration
501
  Utilisez les options ci-dessus pour configurer le modèle de langage.
 
505
  - Assurez-vous que toutes les dépendances sont installées via `pip install -r requirements.txt`.
506
  """)
507
 
508
+ # Section pour les visualisations
509
+ st.subheader("Visualisations")
510
+ st.markdown("""
511
+ Vous pouvez demander des visualisations en utilisant des phrases comme:
512
+ - "Montre-moi un graphique en ligne des températures"
513
+ - "Crée un diagramme à barres des ventes par région"
514
+ - "Affiche un nuage de points de l'âge vs revenu"
515
+
516
+ L'agent détectera automatiquement votre demande et générera une visualisation appropriée.
517
+ """)
518
+
519
  # Afficher l'heure actuelle dans différents fuseaux horaires
520
  st.subheader("Heure actuelle")
521
  selected_timezone = st.selectbox(
tools/validate_final_answer.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Optional
2
+ from smolagents.tools import Tool
3
+ import os
4
+
5
+ class ValidateFinalAnswer(Tool):
6
+ name = "validate_final_answer"
7
+ description = "Provides a final answer to the given problem."
8
+ inputs = {'answer': {'type': 'any', 'description': 'The final answer to the problem to be validate'}}
9
+ output_type = "any"
10
+
11
+ def forward(self, answer: Any) -> Any:
12
+ try:
13
+ compile(answer, "bogusfile.py", "exec")
14
+ # os.remove("bogusfile.py")
15
+ return "Answer is valide and can be submitted to final answer."
16
+ except Exception as e:
17
+ return f"Invalid answer : {e}"
18
+
19
+
20
+ def __init__(self, *args, **kwargs):
21
+ self.is_initialized = False
visualizations.py ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import plotly.graph_objects as go
2
+ import plotly.express as px
3
+ import pandas as pd
4
+ import numpy as np
5
+ import re
6
+ from typing import Dict, List, Union, Optional, Any
7
+
8
+ def create_line_chart(
9
+ data: Union[pd.DataFrame, Dict[str, List[Union[int, float]]], List[Dict[str, Union[int, float]]]],
10
+ title: str = "Line Chart",
11
+ x_label: str = "X-Axis",
12
+ y_label: str = "Y-Axis",
13
+ color_sequence: Optional[List[str]] = None,
14
+ height: int = 400,
15
+ width: int = 700
16
+ ) -> go.Figure:
17
+ """
18
+ Create a line chart using Plotly.
19
+
20
+ Args:
21
+ data: Data for the chart. Can be a pandas DataFrame, a dictionary with lists as values,
22
+ or a list of dictionaries.
23
+ title: Title of the chart.
24
+ x_label: Label for the x-axis.
25
+ y_label: Label for the y-axis.
26
+ color_sequence: Optional list of colors for the lines.
27
+ height: Height of the chart in pixels.
28
+ width: Width of the chart in pixels.
29
+
30
+ Returns:
31
+ A Plotly Figure object.
32
+ """
33
+ fig = go.Figure()
34
+
35
+ # Convert data to pandas DataFrame if it's not already
36
+ if isinstance(data, dict):
37
+ df = pd.DataFrame(data)
38
+ elif isinstance(data, list) and all(isinstance(item, dict) for item in data):
39
+ df = pd.DataFrame(data)
40
+ elif isinstance(data, pd.DataFrame):
41
+ df = data
42
+ else:
43
+ raise ValueError("Data must be a pandas DataFrame, a dictionary with lists as values, or a list of dictionaries.")
44
+
45
+ # If the DataFrame has only two columns, use them as x and y
46
+ if len(df.columns) == 2:
47
+ x_col = df.columns[0]
48
+ y_col = df.columns[1]
49
+ fig.add_trace(go.Scatter(x=df[x_col], y=df[y_col], mode='lines+markers', name=y_col))
50
+ else:
51
+ # Assume first column is x and the rest are y values
52
+ x_col = df.columns[0]
53
+ for i, col in enumerate(df.columns[1:]):
54
+ color = color_sequence[i % len(color_sequence)] if color_sequence else None
55
+ fig.add_trace(go.Scatter(
56
+ x=df[x_col],
57
+ y=df[col],
58
+ mode='lines+markers',
59
+ name=col,
60
+ line=dict(color=color) if color else None
61
+ ))
62
+
63
+ # Update layout
64
+ fig.update_layout(
65
+ title=title,
66
+ xaxis_title=x_label,
67
+ yaxis_title=y_label,
68
+ height=height,
69
+ width=width,
70
+ template="plotly_white",
71
+ hovermode="x unified"
72
+ )
73
+
74
+ return fig
75
+
76
+ def create_bar_chart(
77
+ data: Union[pd.DataFrame, Dict[str, List[Union[int, float]]], List[Dict[str, Union[int, float]]]],
78
+ title: str = "Bar Chart",
79
+ x_label: str = "X-Axis",
80
+ y_label: str = "Y-Axis",
81
+ color_sequence: Optional[List[str]] = None,
82
+ orientation: str = 'v', # 'v' for vertical, 'h' for horizontal
83
+ height: int = 400,
84
+ width: int = 700
85
+ ) -> go.Figure:
86
+ """
87
+ Create a bar chart using Plotly.
88
+
89
+ Args:
90
+ data: Data for the chart. Can be a pandas DataFrame, a dictionary with lists as values,
91
+ or a list of dictionaries.
92
+ title: Title of the chart.
93
+ x_label: Label for the x-axis.
94
+ y_label: Label for the y-axis.
95
+ color_sequence: Optional list of colors for the bars.
96
+ orientation: 'v' for vertical bars, 'h' for horizontal bars.
97
+ height: Height of the chart in pixels.
98
+ width: Width of the chart in pixels.
99
+
100
+ Returns:
101
+ A Plotly Figure object.
102
+ """
103
+ # Convert data to pandas DataFrame if it's not already
104
+ if isinstance(data, dict):
105
+ df = pd.DataFrame(data)
106
+ elif isinstance(data, list) and all(isinstance(item, dict) for item in data):
107
+ df = pd.DataFrame(data)
108
+ elif isinstance(data, pd.DataFrame):
109
+ df = data
110
+ else:
111
+ raise ValueError("Data must be a pandas DataFrame, a dictionary with lists as values, or a list of dictionaries.")
112
+
113
+ # Create the bar chart
114
+ if orientation == 'v':
115
+ # If the DataFrame has only two columns, use them as x and y
116
+ if len(df.columns) == 2:
117
+ x_col = df.columns[0]
118
+ y_col = df.columns[1]
119
+ fig = px.bar(df, x=x_col, y=y_col, title=title, color_discrete_sequence=color_sequence)
120
+ else:
121
+ # For multiple columns, create a grouped bar chart
122
+ fig = go.Figure()
123
+ x_col = df.columns[0]
124
+ for i, col in enumerate(df.columns[1:]):
125
+ color = color_sequence[i % len(color_sequence)] if color_sequence else None
126
+ fig.add_trace(go.Bar(
127
+ x=df[x_col],
128
+ y=df[col],
129
+ name=col,
130
+ marker_color=color
131
+ ))
132
+ else: # horizontal
133
+ # If the DataFrame has only two columns, use them as y and x
134
+ if len(df.columns) == 2:
135
+ y_col = df.columns[0]
136
+ x_col = df.columns[1]
137
+ fig = px.bar(df, y=y_col, x=x_col, title=title, orientation='h', color_discrete_sequence=color_sequence)
138
+ else:
139
+ # For multiple columns, create a grouped bar chart
140
+ fig = go.Figure()
141
+ y_col = df.columns[0]
142
+ for i, col in enumerate(df.columns[1:]):
143
+ color = color_sequence[i % len(color_sequence)] if color_sequence else None
144
+ fig.add_trace(go.Bar(
145
+ y=df[y_col],
146
+ x=df[col],
147
+ name=col,
148
+ marker_color=color,
149
+ orientation='h'
150
+ ))
151
+
152
+ # Update layout
153
+ fig.update_layout(
154
+ title=title,
155
+ xaxis_title=x_label,
156
+ yaxis_title=y_label,
157
+ height=height,
158
+ width=width,
159
+ template="plotly_white",
160
+ barmode='group'
161
+ )
162
+
163
+ return fig
164
+
165
+ def create_scatter_plot(
166
+ data: Union[pd.DataFrame, Dict[str, List[Union[int, float]]], List[Dict[str, Union[int, float]]]],
167
+ title: str = "Scatter Plot",
168
+ x_label: str = "X-Axis",
169
+ y_label: str = "Y-Axis",
170
+ color_column: Optional[str] = None,
171
+ size_column: Optional[str] = None,
172
+ hover_data: Optional[List[str]] = None,
173
+ height: int = 400,
174
+ width: int = 700
175
+ ) -> go.Figure:
176
+ """
177
+ Create a scatter plot using Plotly.
178
+
179
+ Args:
180
+ data: Data for the chart. Can be a pandas DataFrame, a dictionary with lists as values,
181
+ or a list of dictionaries.
182
+ title: Title of the chart.
183
+ x_label: Label for the x-axis.
184
+ y_label: Label for the y-axis.
185
+ color_column: Optional column name to use for coloring points.
186
+ size_column: Optional column name to use for sizing points.
187
+ hover_data: Optional list of column names to include in hover information.
188
+ height: Height of the chart in pixels.
189
+ width: Width of the chart in pixels.
190
+
191
+ Returns:
192
+ A Plotly Figure object.
193
+ """
194
+ # Convert data to pandas DataFrame if it's not already
195
+ if isinstance(data, dict):
196
+ df = pd.DataFrame(data)
197
+ elif isinstance(data, list) and all(isinstance(item, dict) for item in data):
198
+ df = pd.DataFrame(data)
199
+ elif isinstance(data, pd.DataFrame):
200
+ df = data
201
+ else:
202
+ raise ValueError("Data must be a pandas DataFrame, a dictionary with lists as values, or a list of dictionaries.")
203
+
204
+ # If the DataFrame has only two columns, use them as x and y
205
+ if len(df.columns) == 2:
206
+ x_col = df.columns[0]
207
+ y_col = df.columns[1]
208
+ fig = px.scatter(df, x=x_col, y=y_col, title=title)
209
+ else:
210
+ # Assume first two columns are x and y, and use additional columns for color, size, etc.
211
+ x_col = df.columns[0]
212
+ y_col = df.columns[1]
213
+
214
+ # Create the scatter plot
215
+ fig = px.scatter(
216
+ df,
217
+ x=x_col,
218
+ y=y_col,
219
+ color=color_column if color_column and color_column in df.columns else None,
220
+ size=size_column if size_column and size_column in df.columns else None,
221
+ hover_data=hover_data if hover_data else None,
222
+ title=title
223
+ )
224
+
225
+ # Update layout
226
+ fig.update_layout(
227
+ title=title,
228
+ xaxis_title=x_label,
229
+ yaxis_title=y_label,
230
+ height=height,
231
+ width=width,
232
+ template="plotly_white"
233
+ )
234
+
235
+ return fig
236
+
237
+ def detect_visualization_request(user_input: str) -> Dict[str, Any]:
238
+ """
239
+ Detect if the user is requesting a visualization and extract relevant information.
240
+
241
+ Args:
242
+ user_input: The user's input message.
243
+
244
+ Returns:
245
+ A dictionary containing:
246
+ - 'is_visualization': Boolean indicating if a visualization is requested.
247
+ - 'chart_type': The type of chart requested ('line', 'bar', 'scatter', or None).
248
+ - 'data_description': Description of the data to visualize.
249
+ - 'parameters': Additional parameters extracted from the request.
250
+ """
251
+ # Convert to lowercase for case-insensitive matching
252
+ user_input_lower = user_input.lower()
253
+
254
+ # Check for visualization keywords
255
+ viz_keywords = ['plot', 'chart', 'graph', 'visualize', 'visualisation', 'visualization', 'display']
256
+ is_visualization = any(keyword in user_input_lower for keyword in viz_keywords)
257
+
258
+ if not is_visualization:
259
+ return {
260
+ 'is_visualization': False,
261
+ 'chart_type': None,
262
+ 'data_description': None,
263
+ 'parameters': {}
264
+ }
265
+
266
+ # Detect chart type
267
+ chart_type = None
268
+ if any(term in user_input_lower for term in ['line chart', 'line graph', 'line plot']):
269
+ chart_type = 'line'
270
+ elif any(term in user_input_lower for term in ['bar chart', 'bar graph', 'histogram']):
271
+ chart_type = 'bar'
272
+ elif any(term in user_input_lower for term in ['scatter plot', 'scatter chart', 'scatter graph']):
273
+ chart_type = 'scatter'
274
+
275
+ # Extract data description
276
+ data_description = None
277
+ data_patterns = [
278
+ r'(?:of|for|using|with)\s+([^.?!]+?)(?:\s+(?:by|over|across|versus|vs\.?|against))',
279
+ r'(?:of|for|using|with)\s+([^.?!]+?)(?:\s+data)',
280
+ r'(?:of|for|using|with)\s+([^.?!]+?)(?:\s+(?:from|in))'
281
+ ]
282
+
283
+ for pattern in data_patterns:
284
+ match = re.search(pattern, user_input_lower)
285
+ if match:
286
+ data_description = match.group(1).strip()
287
+ break
288
+
289
+ # If no match found with specific patterns, try a more general approach
290
+ if not data_description:
291
+ # Look for text between the chart type and the end of the sentence
292
+ chart_type_terms = ['line chart', 'bar chart', 'scatter plot', 'chart', 'graph', 'plot']
293
+ for term in chart_type_terms:
294
+ if term in user_input_lower:
295
+ parts = user_input_lower.split(term, 1)
296
+ if len(parts) > 1:
297
+ # Extract text after the chart type until the end of the sentence
298
+ after_chart_type = parts[1].strip()
299
+ end_sentence = re.search(r'^[^.!?]*', after_chart_type)
300
+ if end_sentence:
301
+ data_description = end_sentence.group(0).strip()
302
+ # Remove common prepositions at the beginning
303
+ data_description = re.sub(r'^(?:of|for|using|with)\s+', '', data_description)
304
+ break
305
+
306
+ # Extract additional parameters
307
+ parameters = {}
308
+
309
+ # Title
310
+ title_match = re.search(r'title[d:]?\s+["\']?([^"\'.?!]+)["\']?', user_input_lower)
311
+ if title_match:
312
+ parameters['title'] = title_match.group(1).strip()
313
+
314
+ # X-axis label
315
+ x_label_match = re.search(r'x[-\s]?(?:axis|label)[:]?\s+["\']?([^"\'.?!]+)["\']?', user_input_lower)
316
+ if x_label_match:
317
+ parameters['x_label'] = x_label_match.group(1).strip()
318
+
319
+ # Y-axis label
320
+ y_label_match = re.search(r'y[-\s]?(?:axis|label)[:]?\s+["\']?([^"\'.?!]+)["\']?', user_input_lower)
321
+ if y_label_match:
322
+ parameters['y_label'] = y_label_match.group(1).strip()
323
+
324
+ return {
325
+ 'is_visualization': is_visualization,
326
+ 'chart_type': chart_type,
327
+ 'data_description': data_description,
328
+ 'parameters': parameters
329
+ }
330
+
331
+ def generate_sample_data(data_description: str, chart_type: str) -> pd.DataFrame:
332
+ """
333
+ Generate sample data based on the description and chart type.
334
+ This is a fallback when no actual data is available.
335
+
336
+ Args:
337
+ data_description: Description of the data to generate.
338
+ chart_type: Type of chart ('line', 'bar', 'scatter').
339
+
340
+ Returns:
341
+ A pandas DataFrame with sample data.
342
+ """
343
+ np.random.seed(42) # For reproducibility
344
+
345
+ # Default data
346
+ if chart_type == 'line':
347
+ # Generate time series data
348
+ dates = pd.date_range(start='2023-01-01', periods=30, freq='D')
349
+ values = np.cumsum(np.random.randn(30)) + 10
350
+ df = pd.DataFrame({'Date': dates, 'Value': values})
351
+
352
+ # Try to customize based on description
353
+ if data_description:
354
+ if 'temperature' in data_description or 'weather' in data_description:
355
+ df.columns = ['Date', 'Temperature (°C)']
356
+ df['Temperature (°C)'] = np.random.normal(20, 5, 30)
357
+ elif 'stock' in data_description or 'price' in data_description:
358
+ df.columns = ['Date', 'Price ($)']
359
+ df['Price ($)'] = 100 + np.cumsum(np.random.normal(0, 2, 30))
360
+ elif 'sales' in data_description or 'revenue' in data_description:
361
+ df.columns = ['Date', 'Sales ($)']
362
+ df['Sales ($)'] = 1000 + np.cumsum(np.random.normal(0, 100, 30))
363
+ else:
364
+ df.columns = ['Date', data_description.capitalize() if data_description else 'Value']
365
+
366
+ elif chart_type == 'bar':
367
+ # Generate categorical data
368
+ categories = ['A', 'B', 'C', 'D', 'E']
369
+ values = np.random.randint(10, 100, size=len(categories))
370
+ df = pd.DataFrame({'Category': categories, 'Value': values})
371
+
372
+ # Try to customize based on description
373
+ if data_description:
374
+ if 'sales by region' in data_description or 'regional' in data_description:
375
+ df['Category'] = ['North', 'South', 'East', 'West', 'Central']
376
+ df.columns = ['Region', 'Sales ($)']
377
+ elif 'product' in data_description:
378
+ df['Category'] = ['Product A', 'Product B', 'Product C', 'Product D', 'Product E']
379
+ df.columns = ['Product', 'Units Sold']
380
+ elif 'age' in data_description or 'demographic' in data_description:
381
+ df['Category'] = ['0-18', '19-35', '36-50', '51-65', '65+']
382
+ df.columns = ['Age Group', 'Count']
383
+ else:
384
+ df.columns = ['Category', data_description.capitalize() if data_description else 'Value']
385
+
386
+ elif chart_type == 'scatter':
387
+ # Generate x-y data
388
+ x = np.random.normal(0, 1, 50)
389
+ y = x + np.random.normal(0, 0.5, 50)
390
+ df = pd.DataFrame({'X': x, 'Y': y})
391
+
392
+ # Try to customize based on description
393
+ if data_description:
394
+ if 'height' in data_description and 'weight' in data_description:
395
+ df['X'] = np.random.normal(170, 10, 50) # Heights in cm
396
+ df['Y'] = df['X'] * 0.5 + np.random.normal(0, 5, 50) # Weights in kg
397
+ df.columns = ['Height (cm)', 'Weight (kg)']
398
+ elif 'age' in data_description and ('income' in data_description or 'salary' in data_description):
399
+ df['X'] = np.random.normal(40, 10, 50) # Ages
400
+ df['Y'] = df['X'] * 1000 + 20000 + np.random.normal(0, 5000, 50) # Incomes
401
+ df.columns = ['Age', 'Income ($)']
402
+ elif 'study' in data_description or 'exam' in data_description:
403
+ df['X'] = np.random.normal(5, 2, 50) # Study hours
404
+ df['Y'] = df['X'] * 10 + 50 + np.random.normal(0, 5, 50) # Exam scores
405
+ df.columns = ['Study Hours', 'Exam Score']
406
+ else:
407
+ x_label = 'X'
408
+ y_label = 'Y'
409
+ if ' vs ' in data_description:
410
+ parts = data_description.split(' vs ')
411
+ if len(parts) == 2:
412
+ x_label = parts[0].strip().capitalize()
413
+ y_label = parts[1].strip().capitalize()
414
+ df.columns = [x_label, y_label]
415
+
416
+ else:
417
+ # Default fallback
418
+ df = pd.DataFrame({
419
+ 'X': range(1, 11),
420
+ 'Y': np.random.randint(1, 100, 10)
421
+ })
422
+
423
+ return df