from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml import os import sys import subprocess # Ajout de l'import manquant pour ShellCommandTool import io import json from huggingface_hub import HfApi from tools.final_answer import FinalAnswerTool from tools.visit_webpage import VisitWebpageTool from tools.web_search import DuckDuckGoSearchTool from Gradio_UI import GradioUI from smolagents.models import OpenAIServerModel from tools.create_file_tool import CreateFileTool from tools.modify_file_tool import ModifyFileTool # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: arg1: the first argument arg2: the second argument """ return "What magic will you build ?" # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def get_current_realtime()-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that get the current realtime """ return datetime.datetime.now() @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' è # model = HfApiModel( # model_id="http://192.168.1.141:1234/v1", # max_new_tokens=2096, # temperature=0.5 # ) # Configuration du modèle pour se connecter au LLM hébergé localement via LMStudio model = OpenAIServerModel( api_base ="http://192.168.1.141:1234/v1", model_id="Qwen/Qwen2.5-Coder-14B-Instruct-GGUF", # Nom arbitraire pour le modèle local api_key="sk-dummy-key" # Clé factice pour LMStudio # max_tokens=2096, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) # Tentative de correction pour ShellCommandTool try: from tools.shell_tool import ShellCommandTool shell_tool = ShellCommandTool() except Exception as e: print(f"Erreur lors du chargement de ShellCommandTool: {e}") # Créer une version simplifiée de l'outil si nécessaire shell_tool = None agent = CodeAgent( model=model, tools=[final_answer, DuckDuckGoSearchTool(), VisitWebpageTool(), CreateFileTool(), ModifyFileTool()], max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) # Ajouter ShellCommandTool conditionnellement if shell_tool is not None: agent.tools['shell_command'] = shell_tool # Sauvegarder manuellement sans utiliser to_dict() pour éviter les erreurs de validation agent_data = { "name": agent.name, "description": agent.description, "model": agent.model.to_dict() if hasattr(agent.model, "to_dict") else str(agent.model), "tools": [tool.__class__.__name__ for tool in agent.tools.values()], "max_steps": agent.max_steps, "grammar": agent.grammar, "planning_interval": agent.planning_interval, } # # Sauvegarder l'agent au format JSON personnalisé # with open("agent.json", "w", encoding="utf-8") as f: # json.dump(agent_data, f, ensure_ascii=False, indent=2) # # La méthode push_to_hub pose problème avec les emojis, utiliser plutôt le script push_to_hf.py # print("Agent sauvegardé dans agent.json. Utilisez push_to_hf.py pour le pousser sur Hugging Face.") # Utiliser l'API Hugging Face directement avec encodage UTF-8 # try: # api = HfApi() # api.upload_file( # path_or_fileobj="agent.json", # path_in_repo="agent.json", # repo_id="KebabLover/SmolCoderAgent_0_1", # repo_type="space", # commit_message="Mise à jour de l'agent" # ) # print("Agent poussé avec succès vers Hugging Face!") # except Exception as e: # print(f"Erreur lors du push vers Hugging Face: {e}") GradioUI(agent).launch()