Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://huggingface.co/spaces/PAIR/Text2Video-Zero into main
Browse files
model.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from enum import Enum
|
2 |
import gc
|
3 |
import numpy as np
|
4 |
-
import tomesd
|
5 |
import torch
|
6 |
|
7 |
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel, TextToVideoZeroPipeline
|
@@ -83,15 +83,16 @@ class Model:
|
|
83 |
generator=self.generator,
|
84 |
**kwargs)
|
85 |
|
86 |
-
def inference(self, split_to_chunks=False, chunk_size=
|
87 |
if not hasattr(self, "pipe") or self.pipe is None:
|
88 |
return
|
89 |
-
|
90 |
if "merging_ratio" in kwargs:
|
91 |
merging_ratio = kwargs.pop("merging_ratio")
|
92 |
|
93 |
# if merging_ratio > 0:
|
94 |
tomesd.apply_patch(self.pipe, ratio=merging_ratio)
|
|
|
95 |
seed = kwargs.pop('seed', 0)
|
96 |
if seed < 0:
|
97 |
seed = self.generator.seed()
|
@@ -134,7 +135,7 @@ class Model:
|
|
134 |
def process_controlnet_canny(self,
|
135 |
video_path,
|
136 |
prompt,
|
137 |
-
chunk_size=
|
138 |
watermark='Picsart AI Research',
|
139 |
merging_ratio=0.0,
|
140 |
num_inference_steps=20,
|
@@ -200,7 +201,7 @@ class Model:
|
|
200 |
def process_controlnet_depth(self,
|
201 |
video_path,
|
202 |
prompt,
|
203 |
-
chunk_size=
|
204 |
watermark='Picsart AI Research',
|
205 |
merging_ratio=0.0,
|
206 |
num_inference_steps=20,
|
@@ -263,7 +264,7 @@ class Model:
|
|
263 |
def process_controlnet_pose(self,
|
264 |
video_path,
|
265 |
prompt,
|
266 |
-
chunk_size=
|
267 |
watermark='Picsart AI Research',
|
268 |
merging_ratio=0.0,
|
269 |
num_inference_steps=20,
|
@@ -326,7 +327,7 @@ class Model:
|
|
326 |
db_path,
|
327 |
video_path,
|
328 |
prompt,
|
329 |
-
chunk_size=
|
330 |
watermark='Picsart AI Research',
|
331 |
merging_ratio=0.0,
|
332 |
num_inference_steps=20,
|
@@ -397,7 +398,7 @@ class Model:
|
|
397 |
start_t=0,
|
398 |
end_t=-1,
|
399 |
out_fps=-1,
|
400 |
-
chunk_size=
|
401 |
watermark='Picsart AI Research',
|
402 |
merging_ratio=0.0,
|
403 |
use_cf_attn=True,
|
@@ -434,7 +435,7 @@ class Model:
|
|
434 |
t0=44,
|
435 |
t1=47,
|
436 |
n_prompt="",
|
437 |
-
chunk_size=
|
438 |
video_length=8,
|
439 |
watermark='Picsart AI Research',
|
440 |
merging_ratio=0.0,
|
|
|
1 |
from enum import Enum
|
2 |
import gc
|
3 |
import numpy as np
|
4 |
+
#import tomesd
|
5 |
import torch
|
6 |
|
7 |
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel, TextToVideoZeroPipeline
|
|
|
83 |
generator=self.generator,
|
84 |
**kwargs)
|
85 |
|
86 |
+
def inference(self, split_to_chunks=False, chunk_size=2, **kwargs):
|
87 |
if not hasattr(self, "pipe") or self.pipe is None:
|
88 |
return
|
89 |
+
'''
|
90 |
if "merging_ratio" in kwargs:
|
91 |
merging_ratio = kwargs.pop("merging_ratio")
|
92 |
|
93 |
# if merging_ratio > 0:
|
94 |
tomesd.apply_patch(self.pipe, ratio=merging_ratio)
|
95 |
+
'''
|
96 |
seed = kwargs.pop('seed', 0)
|
97 |
if seed < 0:
|
98 |
seed = self.generator.seed()
|
|
|
135 |
def process_controlnet_canny(self,
|
136 |
video_path,
|
137 |
prompt,
|
138 |
+
chunk_size=2,
|
139 |
watermark='Picsart AI Research',
|
140 |
merging_ratio=0.0,
|
141 |
num_inference_steps=20,
|
|
|
201 |
def process_controlnet_depth(self,
|
202 |
video_path,
|
203 |
prompt,
|
204 |
+
chunk_size=2,
|
205 |
watermark='Picsart AI Research',
|
206 |
merging_ratio=0.0,
|
207 |
num_inference_steps=20,
|
|
|
264 |
def process_controlnet_pose(self,
|
265 |
video_path,
|
266 |
prompt,
|
267 |
+
chunk_size=2,
|
268 |
watermark='Picsart AI Research',
|
269 |
merging_ratio=0.0,
|
270 |
num_inference_steps=20,
|
|
|
327 |
db_path,
|
328 |
video_path,
|
329 |
prompt,
|
330 |
+
chunk_size=2,
|
331 |
watermark='Picsart AI Research',
|
332 |
merging_ratio=0.0,
|
333 |
num_inference_steps=20,
|
|
|
398 |
start_t=0,
|
399 |
end_t=-1,
|
400 |
out_fps=-1,
|
401 |
+
chunk_size=2,
|
402 |
watermark='Picsart AI Research',
|
403 |
merging_ratio=0.0,
|
404 |
use_cf_attn=True,
|
|
|
435 |
t0=44,
|
436 |
t1=47,
|
437 |
n_prompt="",
|
438 |
+
chunk_size=2,
|
439 |
video_length=8,
|
440 |
watermark='Picsart AI Research',
|
441 |
merging_ratio=0.0,
|