lev1 commited on
Commit
a174edf
·
2 Parent(s): 8a2f17f a488453

Merge branch 'main' of https://huggingface.co/spaces/PAIR/Text2Video-Zero into main

Browse files
Files changed (1) hide show
  1. model.py +10 -9
model.py CHANGED
@@ -1,7 +1,7 @@
1
  from enum import Enum
2
  import gc
3
  import numpy as np
4
- import tomesd
5
  import torch
6
 
7
  from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel, TextToVideoZeroPipeline
@@ -83,15 +83,16 @@ class Model:
83
  generator=self.generator,
84
  **kwargs)
85
 
86
- def inference(self, split_to_chunks=False, chunk_size=8, **kwargs):
87
  if not hasattr(self, "pipe") or self.pipe is None:
88
  return
89
-
90
  if "merging_ratio" in kwargs:
91
  merging_ratio = kwargs.pop("merging_ratio")
92
 
93
  # if merging_ratio > 0:
94
  tomesd.apply_patch(self.pipe, ratio=merging_ratio)
 
95
  seed = kwargs.pop('seed', 0)
96
  if seed < 0:
97
  seed = self.generator.seed()
@@ -134,7 +135,7 @@ class Model:
134
  def process_controlnet_canny(self,
135
  video_path,
136
  prompt,
137
- chunk_size=8,
138
  watermark='Picsart AI Research',
139
  merging_ratio=0.0,
140
  num_inference_steps=20,
@@ -200,7 +201,7 @@ class Model:
200
  def process_controlnet_depth(self,
201
  video_path,
202
  prompt,
203
- chunk_size=8,
204
  watermark='Picsart AI Research',
205
  merging_ratio=0.0,
206
  num_inference_steps=20,
@@ -263,7 +264,7 @@ class Model:
263
  def process_controlnet_pose(self,
264
  video_path,
265
  prompt,
266
- chunk_size=8,
267
  watermark='Picsart AI Research',
268
  merging_ratio=0.0,
269
  num_inference_steps=20,
@@ -326,7 +327,7 @@ class Model:
326
  db_path,
327
  video_path,
328
  prompt,
329
- chunk_size=8,
330
  watermark='Picsart AI Research',
331
  merging_ratio=0.0,
332
  num_inference_steps=20,
@@ -397,7 +398,7 @@ class Model:
397
  start_t=0,
398
  end_t=-1,
399
  out_fps=-1,
400
- chunk_size=8,
401
  watermark='Picsart AI Research',
402
  merging_ratio=0.0,
403
  use_cf_attn=True,
@@ -434,7 +435,7 @@ class Model:
434
  t0=44,
435
  t1=47,
436
  n_prompt="",
437
- chunk_size=8,
438
  video_length=8,
439
  watermark='Picsart AI Research',
440
  merging_ratio=0.0,
 
1
  from enum import Enum
2
  import gc
3
  import numpy as np
4
+ #import tomesd
5
  import torch
6
 
7
  from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel, TextToVideoZeroPipeline
 
83
  generator=self.generator,
84
  **kwargs)
85
 
86
+ def inference(self, split_to_chunks=False, chunk_size=2, **kwargs):
87
  if not hasattr(self, "pipe") or self.pipe is None:
88
  return
89
+ '''
90
  if "merging_ratio" in kwargs:
91
  merging_ratio = kwargs.pop("merging_ratio")
92
 
93
  # if merging_ratio > 0:
94
  tomesd.apply_patch(self.pipe, ratio=merging_ratio)
95
+ '''
96
  seed = kwargs.pop('seed', 0)
97
  if seed < 0:
98
  seed = self.generator.seed()
 
135
  def process_controlnet_canny(self,
136
  video_path,
137
  prompt,
138
+ chunk_size=2,
139
  watermark='Picsart AI Research',
140
  merging_ratio=0.0,
141
  num_inference_steps=20,
 
201
  def process_controlnet_depth(self,
202
  video_path,
203
  prompt,
204
+ chunk_size=2,
205
  watermark='Picsart AI Research',
206
  merging_ratio=0.0,
207
  num_inference_steps=20,
 
264
  def process_controlnet_pose(self,
265
  video_path,
266
  prompt,
267
+ chunk_size=2,
268
  watermark='Picsart AI Research',
269
  merging_ratio=0.0,
270
  num_inference_steps=20,
 
327
  db_path,
328
  video_path,
329
  prompt,
330
+ chunk_size=2,
331
  watermark='Picsart AI Research',
332
  merging_ratio=0.0,
333
  num_inference_steps=20,
 
398
  start_t=0,
399
  end_t=-1,
400
  out_fps=-1,
401
+ chunk_size=2,
402
  watermark='Picsart AI Research',
403
  merging_ratio=0.0,
404
  use_cf_attn=True,
 
435
  t0=44,
436
  t1=47,
437
  n_prompt="",
438
+ chunk_size=2,
439
  video_length=8,
440
  watermark='Picsart AI Research',
441
  merging_ratio=0.0,