Testing
Browse files
1.jpg
ADDED
![]() |
2.jpg
ADDED
![]() |
test.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import math
|
5 |
+
from PIL import Image
|
6 |
+
import streamlit as st
|
7 |
+
from SkinGPT import SkinGPTClassifier
|
8 |
+
import numpy as np
|
9 |
+
from torchvision import transforms
|
10 |
+
import os
|
11 |
+
|
12 |
+
class SkinGPTTester:
|
13 |
+
def __init__(self, model_path="finetuned_dermnet_version1.pth"):
|
14 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
+
self.classifier = SkinGPTClassifier()
|
16 |
+
self.transform = transforms.Compose([
|
17 |
+
transforms.Resize((224, 224)),
|
18 |
+
transforms.ToTensor(),
|
19 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
20 |
+
])
|
21 |
+
|
22 |
+
def visualize_attention(self, image_path):
|
23 |
+
"""Visualize attention maps from Q-Former"""
|
24 |
+
image = Image.open(image_path).convert('RGB')
|
25 |
+
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
26 |
+
|
27 |
+
with torch.no_grad():
|
28 |
+
# Get attention maps
|
29 |
+
_ = self.classifier.model.encode_image(image_tensor)
|
30 |
+
attention = self.classifier.model.q_former.last_attention[0].mean(dim=0)
|
31 |
+
|
32 |
+
# Reshape attention to image size
|
33 |
+
h = w = int(math.sqrt(attention.shape[1]))
|
34 |
+
attention = attention.reshape(h, w)
|
35 |
+
|
36 |
+
# Plot
|
37 |
+
plt.figure(figsize=(15, 5))
|
38 |
+
|
39 |
+
# Original image
|
40 |
+
plt.subplot(1, 3, 1)
|
41 |
+
plt.imshow(image)
|
42 |
+
plt.title('Original Image')
|
43 |
+
plt.axis('off')
|
44 |
+
|
45 |
+
# Attention map
|
46 |
+
plt.subplot(1, 3, 2)
|
47 |
+
plt.imshow(attention, cmap='hot')
|
48 |
+
plt.title('Attention Map')
|
49 |
+
plt.axis('off')
|
50 |
+
|
51 |
+
# Overlay
|
52 |
+
plt.subplot(1, 3, 3)
|
53 |
+
plt.imshow(image)
|
54 |
+
plt.imshow(attention, alpha=0.5, cmap='hot')
|
55 |
+
plt.title('Attention Overlay')
|
56 |
+
plt.axis('off')
|
57 |
+
|
58 |
+
plt.tight_layout()
|
59 |
+
plt.savefig('attention_visualization.png')
|
60 |
+
plt.close()
|
61 |
+
|
62 |
+
def check_feature_similarity(self, image_path1, image_path2):
|
63 |
+
"""Compare embeddings of two images"""
|
64 |
+
image1 = Image.open(image_path1).convert('RGB')
|
65 |
+
image2 = Image.open(image_path2).convert('RGB')
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
# Get embeddings
|
69 |
+
emb1 = self.classifier.model.encode_image(
|
70 |
+
self.transform(image1).unsqueeze(0).to(self.device)
|
71 |
+
)
|
72 |
+
emb2 = self.classifier.model.encode_image(
|
73 |
+
self.transform(image2).unsqueeze(0).to(self.device)
|
74 |
+
)
|
75 |
+
|
76 |
+
# Calculate cosine similarity
|
77 |
+
similarity = F.cosine_similarity(emb1.mean(dim=1), emb2.mean(dim=1))
|
78 |
+
|
79 |
+
# Print statistics
|
80 |
+
print(f"\nFeature Similarity Analysis:")
|
81 |
+
print(f"Image 1: {image_path1}")
|
82 |
+
print(f"Image 2: {image_path2}")
|
83 |
+
print(f"Cosine Similarity: {similarity.item():.4f}")
|
84 |
+
print(f"Embedding shapes: {emb1.shape}, {emb2.shape}")
|
85 |
+
print(f"Embedding means: {emb1.mean().item():.4f}, {emb2.mean().item():.4f}")
|
86 |
+
print(f"Embedding stds: {emb1.std().item():.4f}, {emb2.std().item():.4f}")
|
87 |
+
|
88 |
+
return similarity.item()
|
89 |
+
|
90 |
+
def validate_response(self, image_path, diagnosis):
|
91 |
+
"""Validate if diagnosis contains relevant visual features"""
|
92 |
+
image = Image.open(image_path).convert('RGB')
|
93 |
+
|
94 |
+
# Extract visual features using attention
|
95 |
+
with torch.no_grad():
|
96 |
+
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
97 |
+
attention = self.classifier.model.q_former.last_attention[0].mean(dim=0)
|
98 |
+
|
99 |
+
# Get regions with high attention
|
100 |
+
attention = attention.reshape(int(math.sqrt(attention.shape[1])), -1)
|
101 |
+
high_attention_regions = (attention > attention.mean() + attention.std()).nonzero()
|
102 |
+
|
103 |
+
print(f"\nResponse Validation:")
|
104 |
+
print(f"Image: {image_path}")
|
105 |
+
print(f"Diagnosis: {diagnosis}")
|
106 |
+
print(f"Number of high-attention regions: {len(high_attention_regions)}")
|
107 |
+
|
108 |
+
return high_attention_regions
|
109 |
+
|
110 |
+
def debug_generation(self, image_path, prompt=None):
|
111 |
+
"""Debug the generation process"""
|
112 |
+
image = Image.open(image_path).convert('RGB')
|
113 |
+
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
114 |
+
|
115 |
+
with torch.no_grad():
|
116 |
+
# Get image embeddings
|
117 |
+
image_embeds = self.classifier.model.encode_image(image_tensor)
|
118 |
+
|
119 |
+
print("\nGeneration Debug Information:")
|
120 |
+
print(f"Image embedding shape: {image_embeds.shape}")
|
121 |
+
print(f"Image embedding mean: {image_embeds.mean().item():.4f}")
|
122 |
+
print(f"Image embedding std: {image_embeds.std().item():.4f}")
|
123 |
+
|
124 |
+
# Get diagnosis
|
125 |
+
result = self.classifier.predict(image, user_input=prompt)
|
126 |
+
|
127 |
+
print(f"\nGenerated Diagnosis:")
|
128 |
+
print(result["diagnosis"])
|
129 |
+
|
130 |
+
return result
|
131 |
+
|
132 |
+
def main():
|
133 |
+
# Initialize tester
|
134 |
+
tester = SkinGPTTester()
|
135 |
+
|
136 |
+
# Test image paths
|
137 |
+
test_image = "1.jpg"
|
138 |
+
similar_image = "2.jpg"
|
139 |
+
|
140 |
+
# Run all tests
|
141 |
+
print("Running comprehensive tests...")
|
142 |
+
|
143 |
+
# 1. Visualize attention
|
144 |
+
print("\n1. Visualizing attention maps...")
|
145 |
+
tester.visualize_attention(test_image)
|
146 |
+
|
147 |
+
# 2. Check feature similarity
|
148 |
+
print("\n2. Checking feature similarity...")
|
149 |
+
similarity = tester.check_feature_similarity(test_image, similar_image)
|
150 |
+
|
151 |
+
# 3. Debug generation
|
152 |
+
print("\n3. Debugging generation process...")
|
153 |
+
result = tester.debug_generation(test_image, "Describe the skin condition in detail.")
|
154 |
+
|
155 |
+
# 4. Validate response
|
156 |
+
print("\n4. Validating response...")
|
157 |
+
high_attention_regions = tester.validate_response(test_image, result["diagnosis"])
|
158 |
+
|
159 |
+
print("\nAll tests completed!")
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
main()
|