Testing
Browse files
1.jpg
CHANGED
![]() |
![]() |
test.py
CHANGED
@@ -34,7 +34,7 @@ class SkinGPTTester:
|
|
34 |
return
|
35 |
|
36 |
# Get the last layer's attention
|
37 |
-
attention = self.classifier.model.q_former.last_attention[0]
|
38 |
|
39 |
# Print attention shape for debugging
|
40 |
print(f"Attention shape: {attention.shape}")
|
@@ -124,7 +124,7 @@ class SkinGPTTester:
|
|
124 |
# Extract visual features using attention
|
125 |
with torch.no_grad():
|
126 |
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
127 |
-
attention = self.classifier.model.q_former.last_attention[0]
|
128 |
|
129 |
# Get regions with high attention
|
130 |
attention = attention.reshape(int(math.sqrt(attention.shape[1])), -1)
|
|
|
34 |
return
|
35 |
|
36 |
# Get the last layer's attention
|
37 |
+
attention = self.classifier.model.q_former.last_attention[0][0] # shape: [num_tokens,]
|
38 |
|
39 |
# Print attention shape for debugging
|
40 |
print(f"Attention shape: {attention.shape}")
|
|
|
124 |
# Extract visual features using attention
|
125 |
with torch.no_grad():
|
126 |
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
127 |
+
attention = self.classifier.model.q_former.last_attention[0][0]
|
128 |
|
129 |
# Get regions with high attention
|
130 |
attention = attention.reshape(int(math.sqrt(attention.shape[1])), -1)
|