File size: 2,001 Bytes
51ee734 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import torch
import gradio as gr
from model import SentimentAnalysisModel
# Load the pre-trained sentiment analysis model
model = SentimentAnalysisModel(bert_model_name="SamLowe/roberta-base-go_emotions", num_labels=7)
model.load_state_dict(torch.load("best_model_0.75.pth", map_location=torch.device('cpu')))
model.eval()
# Mapping from predicted class to emoji
emoji_to_emotion = {
0: 'joy ๐',
1: 'fear ๐ฑ',
2: 'anger ๐ก',
3: 'sadness ๐ญ',
4: 'disgust ๐คฎ',
5: 'shame ๐ณ',
6: 'guilt ๐'
}
# Function to make predictions
def predict_sentiment(text):
inputs = model.tokenizer(text, return_tensors="pt", truncation=True, padding=True)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
_, predicted_class = torch.max(logits, dim=1)
# Map predicted class to emoji
result = emoji_to_emotion[predicted_class.item()]
return result
# Create title, description and article strings
title = "Emoji-aware Sentiment Analysis using Roberta Model"
description = "Explore the power of sentiment analysis with our Emotion Detector! Simply input a sentence or text, and let our model predict the underlying emotion. Discover the magic of AI in understanding human sentiments."
article = "Sentiment Analysis, also known as opinion mining, is a branch of Natural Language Processing (NLP) that involves determining the emotional tone behind a piece of text. This powerful tool allows us to uncover the underlying feelings, attitudes, and opinions expressed in written communication."
# Interface for Gradio
iface = gr.Interface(
fn=predict_sentiment,
inputs="text",
outputs="text",
live=True,
theme="huggingface",
interpretation="default",
title=title,
description=description,
article=article)
# Launch the Gradio interface
iface.launch()
|