File size: 933 Bytes
7c6b19a
be10833
 
 
 
 
 
7c6b19a
99256f5
be10833
 
 
 
80e7abb
be10833
 
 
 
 
 
d19bd0a
38afc93
be10833
 
 
 
 
7c6b19a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load pre-trained model and tokenizer from Hugging Face
model_name = "gpt2"  # You can use other models like "gpt-neo", "gpt-3", etc.
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Title of the app
st.title("LLM Chatbot")

# User input for chatbot
user_input = st.text_input("You: ", "")

# Function to generate the response using the model
def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs.input_ids, max_length=150, num_return_sequences=1)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

if user_input:
    # Generate a response from the model
    response = generate_response(user_input)
    
    # Display only the bot's response
    st.write(f"Bot: {response}")