Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Define the model name | |
model_name = "Qwen/Qwen2.5-1.5B-Instruct" | |
# Load the model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Function to generate a response | |
def generate_response(prompt): | |
if not prompt: | |
return "Please enter a prompt." | |
# Create the messages for chat-based model | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
# Format the input for the model | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
# Generate model response | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=512 | |
) | |
# Decode and return the response | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
# Streamlit UI | |
st.title("AI Text Generator") | |
prompt = st.text_area("Enter your prompt:", placeholder="Type your question or prompt here...") | |
if st.button("Generate Response"): | |
with st.spinner("Generating response..."): | |
response = generate_response(prompt) | |
st.text_area("Model Response:", value=response, height=200, disabled=True) | |