Keiraj commited on
Commit
e289df7
·
verified ·
1 Parent(s): a64eff4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -2
app.py CHANGED
@@ -1,4 +1,59 @@
1
  import streamlit as st
 
 
2
 
3
- with st.chat_message("user"):
4
- st.write("hello 👋")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
+ # Load the model and tokenizer
6
+ model_name = "Qwen/Qwen2.5-1.5B-Instruct"
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ model_name,
9
+ torch_dtype="auto",
10
+ device_map="auto"
11
+ )
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
13
+
14
+ # Initialize chat history
15
+ if "messages" not in st.session_state:
16
+ st.session_state.messages = [
17
+ {"role": "system", "content": "You are a helpful assistant."}
18
+ ]
19
+
20
+ # Display chat messages from history on app rerun
21
+ for message in st.session_state.messages:
22
+ with st.chat_message(message["role"]):
23
+ st.markdown(message["content"])
24
+
25
+ # Accept user input
26
+ if prompt := st.chat_input("Ask me anything about data structures in LeetCode"):
27
+ # Add user message to chat history
28
+ st.session_state.messages.append({"role": "user", "content": prompt})
29
+ # Display user message in chat message container
30
+ with st.chat_message("user"):
31
+ st.markdown(prompt)
32
+
33
+ # Prepare the chat message for the model
34
+ messages = st.session_state.messages[-10:] # limit messages to last 10 for performance
35
+ text = tokenizer.apply_chat_template(
36
+ messages,
37
+ tokenize=False,
38
+ add_generation_prompt=True
39
+ )
40
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
41
+
42
+ # Generate response from the model
43
+ generated_ids = model.generate(
44
+ **model_inputs,
45
+ max_new_tokens=512
46
+ )
47
+ generated_ids = [
48
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
49
+ ]
50
+
51
+ # Decode the response
52
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
53
+
54
+ # Add bot response to chat history
55
+ st.session_state.messages.append({"role": "assistant", "content": response})
56
+
57
+ # Display bot response in chat message container
58
+ with st.chat_message("assistant"):
59
+ st.markdown(response)