import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load the tokenizer and model (change 'model_name' to your specific model) model_name = "gpt2" # Replace with your model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Function to generate a response def generate_response(prompt): if not prompt: return "Please enter a prompt." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) output = model.generate(**inputs, max_new_tokens=512) response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Streamlit UI st.title("AI Text Generator") prompt = st.text_area("Enter your prompt:", placeholder="Type your question or prompt here...") if st.button("Generate Response"): with st.spinner("Generating response..."): response = generate_response(prompt) st.text_area("Model Response:", value=response, height=200, disabled=True)