import gradio as gr from huggingface_hub import InferenceClient # Connect to Hugging Face model client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Define the chat response function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Gradio interface layout demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), ], css=".gradio-container {background-color: #ffeef8;} .gr-button {background-color: #ff88cc; color: white; border-radius: 12px;} .gr-input {border: 2px solid #ff66b2; border-radius: 10px;} .gr-output {border: 2px solid #ff66b2; border-radius: 10px; padding: 10px;} .gr-button:hover {background-color: #ff66b2;} .gr-textbox {background-color: #fff1f5;}", theme="huggingface", # Hugging Face's default theme title="Cuddly Chatbot 🐾", # Title for the app description="Welcome to the most adorable chatbot! 💖", ) if __name__ == "__main__": demo.launch()