import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer model_name = "Qwen/Qwen2.5-1.5B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [ {"role": "system", "content": "You are a helpful assistant."} ] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("Ask me anything about data structures in LeetCode"): # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Prepare the chat message for the model messages = st.session_state.messages[-10:] # limit messages to last 10 for performance text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] # Decode the response response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add bot response to chat history st.session_state.messages.append({"role": "assistant", "content": response}) # Display bot response in chat message container with st.chat_message("assistant"): st.markdown(response)