Spaces:
Running
Running
Upload 2 files
Browse files- app.py +70 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from io import BytesIO
|
6 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration
|
7 |
+
|
8 |
+
# Load the pretrained processor and model
|
9 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
10 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
11 |
+
|
12 |
+
def fetch_image(url: str) -> np.ndarray:
|
13 |
+
"""Fetch an image from a given URL and return it as a numpy array."""
|
14 |
+
try:
|
15 |
+
response = requests.get(url, stream=True)
|
16 |
+
response.raise_for_status()
|
17 |
+
image = Image.open(response.raw).convert('RGB')
|
18 |
+
return np.array(image)
|
19 |
+
except Exception as e:
|
20 |
+
raise ValueError(f"Failed to fetch image: {str(e)}")
|
21 |
+
|
22 |
+
def caption_image(input_image=None, image_url=None):
|
23 |
+
"""Generate captions for the input image or image fetched from a URL."""
|
24 |
+
try:
|
25 |
+
if image_url:
|
26 |
+
image_array = fetch_image(image_url)
|
27 |
+
elif input_image is not None:
|
28 |
+
image_array = input_image
|
29 |
+
else:
|
30 |
+
raise ValueError("Please provide either an image or an image URL.")
|
31 |
+
|
32 |
+
# Ensure the image is in RGB format
|
33 |
+
pil_image = Image.fromarray(image_array).convert('RGB')
|
34 |
+
|
35 |
+
# Process the image and generate caption
|
36 |
+
inputs = processor(pil_image, return_tensors="pt")
|
37 |
+
out = model.generate(**inputs, max_length=50)
|
38 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
39 |
+
|
40 |
+
# Save caption as a downloadable .txt file
|
41 |
+
caption_path = "caption.txt"
|
42 |
+
with open(caption_path, "w") as f:
|
43 |
+
f.write(caption)
|
44 |
+
|
45 |
+
return caption, caption_path
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error: {str(e)}", None
|
48 |
+
|
49 |
+
iface = gr.Interface(
|
50 |
+
fn=caption_image,
|
51 |
+
inputs=[
|
52 |
+
gr.Image(type="numpy", label="Upload Image"),
|
53 |
+
gr.Textbox(label="Image URL (Optional)", placeholder="Enter an image URL here")
|
54 |
+
],
|
55 |
+
outputs=[
|
56 |
+
gr.Textbox(label="Generated Caption"),
|
57 |
+
gr.File(label="Download Caption")
|
58 |
+
],
|
59 |
+
examples = [
|
60 |
+
["model.jpg"],
|
61 |
+
["horse.jpeg"],
|
62 |
+
["panda.jpg"]
|
63 |
+
],
|
64 |
+
title="Advanced Image Captioning with the BLIP model",
|
65 |
+
description="Upload an image or provide a URL to generate a caption. Download the generated caption as a .txt file.",
|
66 |
+
live=True,
|
67 |
+
theme="compact"
|
68 |
+
)
|
69 |
+
|
70 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.29.0
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
Pillow
|
5 |
+
requests
|