Spaces:
Running
Running
import os | |
from typing import List | |
import numpy as np | |
import onnxruntime as ort | |
import pooch | |
from PIL import Image | |
from PIL.Image import Image as PILImage | |
from .base import BaseSession | |
class U2netCustomSession(BaseSession): | |
"""This is a class representing a custom session for the U2net model.""" | |
def __init__( | |
self, | |
model_name: str, | |
sess_opts: ort.SessionOptions, | |
providers=None, | |
*args, | |
**kwargs | |
): | |
""" | |
Initialize a new U2netCustomSession object. | |
Parameters: | |
model_name (str): The name of the model. | |
sess_opts (ort.SessionOptions): The session options. | |
providers: The providers. | |
*args: Additional positional arguments. | |
**kwargs: Additional keyword arguments. | |
Raises: | |
ValueError: If model_path is None. | |
""" | |
model_path = kwargs.get("model_path") | |
if model_path is None: | |
raise ValueError("model_path is required") | |
super().__init__(model_name, sess_opts, providers, *args, **kwargs) | |
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: | |
""" | |
Predict the segmentation mask for the input image. | |
Parameters: | |
img (PILImage): The input image. | |
*args: Additional positional arguments. | |
**kwargs: Additional keyword arguments. | |
Returns: | |
List[PILImage]: A list of PILImage objects representing the segmentation mask. | |
""" | |
ort_outs = self.inner_session.run( | |
None, | |
self.normalize( | |
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320) | |
), | |
) | |
pred = ort_outs[0][:, 0, :, :] | |
ma = np.max(pred) | |
mi = np.min(pred) | |
pred = (pred - mi) / (ma - mi) | |
pred = np.squeeze(pred) | |
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") | |
mask = mask.resize(img.size, Image.Resampling.LANCZOS) | |
return [mask] | |
def download_models(cls, *args, **kwargs): | |
""" | |
Download the model files. | |
Parameters: | |
*args: Additional positional arguments. | |
**kwargs: Additional keyword arguments. | |
Returns: | |
str: The absolute path to the model files. | |
""" | |
model_path = kwargs.get("model_path") | |
if model_path is None: | |
return | |
return os.path.abspath(os.path.expanduser(model_path)) | |
def name(cls, *args, **kwargs): | |
""" | |
Get the name of the model. | |
Parameters: | |
*args: Additional positional arguments. | |
**kwargs: Additional keyword arguments. | |
Returns: | |
str: The name of the model. | |
""" | |
return "u2net_custom" | |