Spaces:
Sleeping
Sleeping
sweetcocoa
commited on
Commit
•
71a2b8b
1
Parent(s):
db4880c
refactor ui
Browse files- app.py +54 -91
- requirements.txt +2 -2
- utils.py +21 -0
app.py
CHANGED
@@ -2,16 +2,17 @@ import os
|
|
2 |
import binascii
|
3 |
import warnings
|
4 |
|
5 |
-
import
|
6 |
import librosa
|
7 |
import numpy as np
|
8 |
-
import
|
9 |
-
import
|
10 |
-
import
|
11 |
|
12 |
from pytube.exceptions import VideoUnavailable
|
13 |
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
|
14 |
|
|
|
15 |
|
16 |
yt_video_dir = "./yt_dir"
|
17 |
outputs_dir = "./midi_wav_outputs"
|
@@ -24,7 +25,7 @@ processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
|
|
24 |
composers = model.generation_config.composer_to_feature_token.keys()
|
25 |
|
26 |
|
27 |
-
def get_audio_from_yt_video(yt_link):
|
28 |
try:
|
29 |
yt = pt.YouTube(yt_link)
|
30 |
t = yt.streams.filter(only_audio=True)
|
@@ -40,55 +41,43 @@ def get_audio_from_yt_video(yt_link):
|
|
40 |
def inference(file_uploaded, composer):
|
41 |
# to save the native sampling rate of the file, sr=None is used, but this can cause some silent errors where the
|
42 |
# generated output will not be upto the desired quality. If that happens please consider switching sr to 44100 Hz.
|
43 |
-
|
44 |
|
45 |
-
inputs = processor(audio=
|
46 |
model_output = model.generate(input_features=inputs["input_features"], composer=composer)
|
47 |
tokenizer_output = processor.batch_decode(
|
48 |
token_ids=model_output.to("cpu"), feature_extractor_output=inputs.to("cpu")
|
49 |
)["pretty_midi_objects"]
|
50 |
|
51 |
-
return prepare_output_file(tokenizer_output, sr)
|
52 |
|
53 |
|
54 |
-
def prepare_output_file(tokenizer_output, sr:int):
|
55 |
# Add some random values so that no two file names are same
|
56 |
-
output_file_name = "
|
57 |
midi_output = os.path.join(outputs_dir, output_file_name + ".mid")
|
58 |
|
59 |
# write the .mid and its wav files
|
60 |
tokenizer_output[0].write(midi_output)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
return wav_output, wav_output, midi_output
|
66 |
-
|
67 |
-
|
68 |
-
def get_stereo(pop_path, midi, pop_scale=0.5):
|
69 |
-
pop_y, sr = librosa.load(pop_path, sr=None)
|
70 |
-
midi_y, _ = librosa.load(midi.name, sr=None)
|
71 |
|
|
|
72 |
if len(pop_y) > len(midi_y):
|
73 |
midi_y = np.pad(midi_y, (0, len(pop_y) - len(midi_y)))
|
74 |
elif len(pop_y) < len(midi_y):
|
75 |
pop_y = np.pad(pop_y, (0, -len(pop_y) + len(midi_y)))
|
76 |
-
stereo = np.stack((midi_y, pop_y *
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
data=stereo.T,
|
82 |
-
samplerate=sr,
|
83 |
-
format="wav",
|
84 |
-
)
|
85 |
|
86 |
-
return
|
87 |
|
88 |
|
89 |
-
|
90 |
-
# taken from https://huggingface.co/spaces/NoCrypt/miku
|
91 |
-
block = gr.Blocks(theme="Taithrah/Minimal")
|
92 |
|
93 |
with block:
|
94 |
gr.HTML(
|
@@ -114,67 +103,48 @@ with block:
|
|
114 |
"""
|
115 |
)
|
116 |
with gr.Group():
|
117 |
-
with gr.
|
118 |
-
with gr.
|
119 |
-
|
120 |
-
|
121 |
-
with gr.
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
-
yt_btn
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
outputs=[yt_audio_path, file_uploaded],
|
134 |
-
)
|
135 |
|
136 |
with gr.Group():
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
141 |
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
142 |
-
|
143 |
wav_output1 = gr.Audio(label="Listen to the Generated MIDI")
|
|
|
|
|
|
|
|
|
144 |
midi_output = gr.File(label="Download the Generated MIDI (.mid)")
|
145 |
generate_btn.click(
|
146 |
inference,
|
147 |
inputs=[file_uploaded, composer],
|
148 |
-
outputs=[wav_output1, wav_output2, midi_output],
|
149 |
)
|
150 |
|
151 |
-
with gr.Group():
|
152 |
-
gr.HTML(
|
153 |
-
"""
|
154 |
-
<div> <h3> <center> Get the Stereo Mix from the Pop Music and Generated MIDI </h3> </div>
|
155 |
-
"""
|
156 |
-
)
|
157 |
-
pop_scale = (
|
158 |
-
gr.Slider(
|
159 |
-
0,
|
160 |
-
1,
|
161 |
-
value=0.5,
|
162 |
-
label="Choose the ratio between Pop and MIDI",
|
163 |
-
info="1.0 = Only Pop, 0.0=Only MIDI",
|
164 |
-
interactive=True,
|
165 |
-
),
|
166 |
-
)
|
167 |
-
stereo_btn = gr.Button("Get Stereo Mix")
|
168 |
-
with gr.Row():
|
169 |
-
stereo_mix1 = gr.Audio(label="Listen to the Stereo Mix")
|
170 |
-
stereo_mix2 = gr.File(label="Download the Stereo Mix")
|
171 |
-
|
172 |
-
stereo_btn.click(
|
173 |
-
get_stereo,
|
174 |
-
inputs=[file_uploaded, wav_output2, pop_scale[0]],
|
175 |
-
outputs=[stereo_mix1, stereo_mix2],
|
176 |
-
)
|
177 |
-
|
178 |
with gr.Group():
|
179 |
gr.Examples(
|
180 |
[
|
@@ -182,16 +152,9 @@ with block:
|
|
182 |
],
|
183 |
fn=inference,
|
184 |
inputs=[file_uploaded, composer],
|
185 |
-
outputs=[wav_output1, wav_output2, midi_output],
|
186 |
cache_examples=True,
|
187 |
)
|
188 |
-
gr.HTML(
|
189 |
-
"""
|
190 |
-
<div class="footer">
|
191 |
-
<center>The design for this Space is taken from <a href="https://huggingface.co/spaces/NoCrypt/miku"> NoCrypt/miku </a>
|
192 |
-
</div>
|
193 |
-
"""
|
194 |
-
)
|
195 |
|
196 |
gr.HTML(
|
197 |
"""
|
|
|
2 |
import binascii
|
3 |
import warnings
|
4 |
|
5 |
+
import gradio as gr
|
6 |
import librosa
|
7 |
import numpy as np
|
8 |
+
import torch
|
9 |
+
import pretty_midi
|
10 |
+
import pytube as pt
|
11 |
|
12 |
from pytube.exceptions import VideoUnavailable
|
13 |
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
|
14 |
|
15 |
+
from utils import mp3_write, normalize
|
16 |
|
17 |
yt_video_dir = "./yt_dir"
|
18 |
outputs_dir = "./midi_wav_outputs"
|
|
|
25 |
composers = model.generation_config.composer_to_feature_token.keys()
|
26 |
|
27 |
|
28 |
+
def get_audio_from_yt_video(yt_link: str):
|
29 |
try:
|
30 |
yt = pt.YouTube(yt_link)
|
31 |
t = yt.streams.filter(only_audio=True)
|
|
|
41 |
def inference(file_uploaded, composer):
|
42 |
# to save the native sampling rate of the file, sr=None is used, but this can cause some silent errors where the
|
43 |
# generated output will not be upto the desired quality. If that happens please consider switching sr to 44100 Hz.
|
44 |
+
pop_y, sr = librosa.load(file_uploaded, sr=None)
|
45 |
|
46 |
+
inputs = processor(audio=pop_y, sampling_rate=sr, return_tensors="pt").to(device)
|
47 |
model_output = model.generate(input_features=inputs["input_features"], composer=composer)
|
48 |
tokenizer_output = processor.batch_decode(
|
49 |
token_ids=model_output.to("cpu"), feature_extractor_output=inputs.to("cpu")
|
50 |
)["pretty_midi_objects"]
|
51 |
|
52 |
+
return prepare_output_file(tokenizer_output, sr, pop_y)
|
53 |
|
54 |
|
55 |
+
def prepare_output_file(tokenizer_output: pretty_midi.PrettyMIDI, sr: int, pop_y: np.ndarray):
|
56 |
# Add some random values so that no two file names are same
|
57 |
+
output_file_name = "p2p_" + binascii.hexlify(os.urandom(8)).decode()
|
58 |
midi_output = os.path.join(outputs_dir, output_file_name + ".mid")
|
59 |
|
60 |
# write the .mid and its wav files
|
61 |
tokenizer_output[0].write(midi_output)
|
62 |
+
midi_y: np.ndarray = tokenizer_output[0].fluidsynth(sr)
|
63 |
+
midi_y_path: str = midi_output.replace(".mid", ".mp3")
|
64 |
+
mp3_write(midi_y_path, sr, normalize(midi_y), normalized=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# stack stereo audio
|
67 |
if len(pop_y) > len(midi_y):
|
68 |
midi_y = np.pad(midi_y, (0, len(pop_y) - len(midi_y)))
|
69 |
elif len(pop_y) < len(midi_y):
|
70 |
pop_y = np.pad(pop_y, (0, -len(pop_y) + len(midi_y)))
|
71 |
+
stereo = np.stack((midi_y, pop_y * 0.5))
|
72 |
+
|
73 |
+
# write stereo audio
|
74 |
+
stereo_path = midi_output.replace(".mid", ".mix.mp3")
|
75 |
+
mp3_write(stereo_path, sr, normalize(stereo.T), normalized=True)
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
return midi_y_path, midi_y_path, midi_output, stereo_path, stereo_path
|
78 |
|
79 |
|
80 |
+
block = gr.Blocks()
|
|
|
|
|
81 |
|
82 |
with block:
|
83 |
gr.HTML(
|
|
|
103 |
"""
|
104 |
)
|
105 |
with gr.Group():
|
106 |
+
with gr.Column():
|
107 |
+
with gr.Blocks() as audio_select:
|
108 |
+
with gr.Tab("Upload Audio"):
|
109 |
+
file_uploaded = gr.Audio(label="Upload an audio", type="filepath")
|
110 |
+
with gr.Tab("YouTube url"):
|
111 |
+
with gr.Row():
|
112 |
+
yt_link = gr.Textbox(
|
113 |
+
label="Enter YouTube Link of the Video", autofocus=True, lines=3
|
114 |
+
)
|
115 |
+
yt_btn = gr.Button("Download Audio from YouTube Link", size="lg")
|
116 |
+
yt_audio_path = gr.Audio(
|
117 |
+
label="Audio Extracted from the YouTube Video", interactive=False
|
118 |
)
|
119 |
+
yt_btn.click(
|
120 |
+
get_audio_from_yt_video,
|
121 |
+
inputs=[yt_link],
|
122 |
+
outputs=[yt_audio_path, file_uploaded],
|
123 |
+
)
|
124 |
+
with gr.Column():
|
125 |
+
composer = gr.Dropdown(label="Arranger", choices=composers, value="composer1")
|
126 |
+
generate_btn = gr.Button("Generate")
|
|
|
|
|
127 |
|
128 |
with gr.Group():
|
129 |
+
gr.HTML(
|
130 |
+
"""
|
131 |
+
<div> <h3> <center> Listen to the generated MIDI. </h3> </div>
|
132 |
+
"""
|
133 |
+
)
|
134 |
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
135 |
+
stereo_mix1 = gr.Audio(label="Listen to the Stereo Mix")
|
136 |
wav_output1 = gr.Audio(label="Listen to the Generated MIDI")
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
stereo_mix2 = gr.File(label="Download the Stereo Mix (.mp3")
|
140 |
+
wav_output2 = gr.File(label="Download the Generated MIDI (.mp3)")
|
141 |
midi_output = gr.File(label="Download the Generated MIDI (.mid)")
|
142 |
generate_btn.click(
|
143 |
inference,
|
144 |
inputs=[file_uploaded, composer],
|
145 |
+
outputs=[wav_output1, wav_output2, midi_output, stereo_mix1, stereo_mix2],
|
146 |
)
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
with gr.Group():
|
149 |
gr.Examples(
|
150 |
[
|
|
|
152 |
],
|
153 |
fn=inference,
|
154 |
inputs=[file_uploaded, composer],
|
155 |
+
outputs=[wav_output1, wav_output2, midi_output, stereo_mix1, stereo_mix2],
|
156 |
cache_examples=True,
|
157 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
gr.HTML(
|
160 |
"""
|
requirements.txt
CHANGED
@@ -3,8 +3,8 @@ librosa
|
|
3 |
pretty-midi==0.2.9
|
4 |
essentia==2.1b6.dev1034
|
5 |
pyFluidSynth==1.3.0
|
6 |
-
|
7 |
pytube
|
8 |
gradio
|
9 |
resampy
|
10 |
-
|
|
|
3 |
pretty-midi==0.2.9
|
4 |
essentia==2.1b6.dev1034
|
5 |
pyFluidSynth==1.3.0
|
6 |
+
transformers
|
7 |
pytube
|
8 |
gradio
|
9 |
resampy
|
10 |
+
pydub
|
utils.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pydub
|
3 |
+
|
4 |
+
|
5 |
+
def mp3_write(f: str, sr: int, x: np.ndarray, normalized: bool = False):
|
6 |
+
channels = 2 if (x.ndim == 2 and x.shape[1] == 2) else 1
|
7 |
+
if normalized: # normalized array - each item should be a float in [-1, 1)
|
8 |
+
y = np.int16(x * 2**15)
|
9 |
+
else:
|
10 |
+
y = np.int16(x)
|
11 |
+
song = pydub.AudioSegment(y.tobytes(), frame_rate=sr, sample_width=2, channels=channels)
|
12 |
+
song.export(f, format="mp3", bitrate="256k")
|
13 |
+
|
14 |
+
|
15 |
+
def normalize(audio: np.ndarray, min_y: float = -1.0, max_y: float = 1.0, eps: float = 1e-8):
|
16 |
+
max_y -= eps
|
17 |
+
min_y += eps
|
18 |
+
amax = audio.max()
|
19 |
+
amin = audio.min()
|
20 |
+
audio = (max_y - min_y) * (audio - amin) / (amax - amin) + min_y
|
21 |
+
return audio
|