File size: 5,793 Bytes
194688b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cce186
194688b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from fastapi import FastAPI
from pydantic import BaseModel, Field
from typing import Literal
import json
import numpy as np
import onnxruntime as ort
from typing_extensions import Annotated
import gradio as gr
from cryptography.fernet import Fernet
import os

# Model load
key = os.getenv("ONNX_KEY")
cipher = Fernet(key)

VERSION = "0.0.1"
TITLE = f"DVPI beregnings API (version {VERSION})"
DESCRIPTION = "Beregn Dansk Vandløbs Plante Indeks (DVPI) fra dækningsgrad af plantearter. Beregningen er baseret på en model som efterligner DVPI beregningsmetoden og er dermed ikke eksakt, usikkerheden er i gennemsnit **±0.05 EQR-enheder**."
URL = "https://kennethtm-dvpi.hf.space"

# Load ONNX model and species mappings
with open("model.bin", "rb") as f:
    encrypted = f.read()
    decrypted = cipher.decrypt(encrypted)
    ort_session = ort.InferenceSession(decrypted)

with open("spec2idx.json", "r") as f:
    spec2idx = json.load(f)

# Define types
valid_species = tuple(spec2idx.keys())

class SpeciesCover(BaseModel):
    species: dict[Literal[valid_species], Annotated[float, Field(ge=0, le=100)]]
    
    model_config = {
        "json_schema_extra": {
            "examples": [{
                "species": {
                    "Potamogeton alpinus": 25.0,
                    "Berula erecta": 15.5,
                    "Calamagrostis canescens": 10.0
                }
            }]
        }
    }


class EQRResult(BaseModel):
    EQR: float  # Round to 2 decimals
    DVPI: int
    version: str = VERSION

# Create FastAPI app
app = FastAPI(title=TITLE,
              description=DESCRIPTION)

def eqr_to_dvpi(eqr: float) -> int:
    if eqr < 0.20:
        return 1
    elif eqr < 0.35:
        return 2
    elif eqr < 0.50:
        return 3
    elif eqr < 0.70:
        return 4
    else:
        return 5

# FastAPI routes
@app.post("/dvpi")
def predict(cover_data: SpeciesCover) -> EQRResult:
    """Predict EQR and DVPI from species cover data"""
    # Initialize input vector with zeros
    input_vector = np.zeros((1, len(spec2idx)))

    print(cover_data.species)

    # Fill values from input
    for species, cover in cover_data.species.items():
        idx = spec2idx[species]
        input_vector[0, idx] = cover
    
    # Get prediction
    input_name = ort_session.get_inputs()[0].name
    ort_inputs = {input_name: input_vector.astype(np.float32)}
    ort_output = ort_session.run(None, ort_inputs)

    eqr = float(ort_output[0][0])
    dvpi = eqr_to_dvpi(eqr)
    
    return EQRResult(EQR=round(eqr, 2), DVPI=dvpi)

@app.get("/arter")
def list_species() -> dict:
    """Return list of valid species names"""
    return {"species": list(spec2idx.keys())}

# Gradio app
def add_entry(species, cover, current_dict) -> tuple[SpeciesCover, str]:
    
    current_dict[species] = cover

    return current_dict, current_dict

def gradio_predict(cover_data: dict):

    if len(cover_data) == 0:
        return {}

    data = SpeciesCover(species=cover_data)
    result = predict(data)    

    return result.model_dump()
    
with gr.Blocks() as io:

    gr.Markdown(f"# {TITLE}")
    gr.Markdown(DESCRIPTION)

    with gr.Tab(label = "Beregner"):

        gr.Markdown("Beregning er baseret på samfund af plantearter og deres dækningsgrad. Dækningsgraden angives i procent som summen af scoren for dækningsgraden (1-5) divideret med det samlede antal undersøgte kvadrater gange 5, og til sidste konverteret til procent. Eksempel: Potamogeton alpinus findes 3 felter med scorerne 2, 3 og 5 ud af 50 undersøgte kvadrater. Dækningsgraden for Potamogeton alpinus er derfor (2+3+5)/(50*5)*100 = 4%.")

        current_dict = gr.State({})
        
        with gr.Row():
            species_input = gr.Dropdown(choices=valid_species, label="Vælg art")
            cover_input = gr.Number(label="Dækningsgrad (%)", minimum=0, maximum=100)
        
        with gr.Row():
            add_btn = gr.Button("Tilføj")
            reset_btn = gr.Button("Nulstil")
        
        list_display = gr.JSON(label="Artsliste")
        
        calc_btn = gr.Button("Beregn")
        results = gr.JSON(label="Resultater")
            
        def reset_dict():
            return {}, {}, {}
        
        add_btn.click(
            add_entry,
            inputs=[species_input, cover_input, current_dict],
            outputs=[current_dict, list_display]
        )
        
        reset_btn.click(
            reset_dict,
            inputs=[],
            outputs=[current_dict, list_display, results]
        )
        
        calc_btn.click(
            gradio_predict,
            inputs=[current_dict],
            outputs=results
        )

        gr.Markdown("App og model af Kenneth Thorø Martinsen.")

    with gr.Tab(label="Dokumentation"):

        # Add markdown description with code to call the api in python
        gr.Markdown("## Eksempel på brug af API")
        gr.Markdown(f"API dokumentation kan findes på [{URL}/docs]({URL}/docs)")
        gr.Markdown("### Python")
        gr.Code(f"""
import requests
import json
            
data = {{
    "species": {{
        "Potamogeton alpinus": 25.0,
        "Berula erecta": 15.5,
        "Calamagrostis canescens": 10.0
    }}
}}

response = requests.post("{URL}/dvpi", json=data)
print(response.json())
        """)

        gr.Markdown("### R")
        gr.Code(f"""
library(httr)
library(jsonlite)

data <- list(species = list(
    "Potamogeton alpinus" = 25.0,
    "Berula erecta" = 15.5,
    "Calamagrostis canescens" = 10.0
))

response <- POST("{URL}/dvpi",
                body = toJSON(data, auto_unbox = TRUE),
                content_type("application/json"))

print(fromJSON(rawToChar(response$content)))
        """)
    
# Mount Gradio app
app = gr.mount_gradio_app(app, io, path="/")