Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,91 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel, Field
|
3 |
-
from typing import Literal
|
4 |
-
import json
|
5 |
import numpy as np
|
6 |
import onnxruntime as ort
|
7 |
from typing_extensions import Annotated
|
8 |
import gradio as gr
|
|
|
9 |
from cryptography.fernet import Fernet
|
10 |
import os
|
|
|
|
|
|
|
11 |
|
12 |
# Model load
|
13 |
key = os.getenv("ONNX_KEY")
|
14 |
cipher = Fernet(key)
|
15 |
|
16 |
-
VERSION = "0.0.
|
17 |
TITLE = f"DVPI beregnings API (version {VERSION})"
|
18 |
-
DESCRIPTION = "Beregn Dansk Vandløbs Plante Indeks (DVPI) fra dækningsgrad af plantearter. Beregningen er baseret på en model som efterligner DVPI beregningsmetoden og er dermed ikke eksakt, usikkerheden er i gennemsnit **±0.
|
19 |
-
URL = "https://kennethtm-dvpi.hf.space
|
20 |
|
21 |
# Load ONNX model and species mappings
|
22 |
-
with open("
|
23 |
encrypted = f.read()
|
24 |
decrypted = cipher.decrypt(encrypted)
|
25 |
ort_session = ort.InferenceSession(decrypted)
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
# Define types
|
31 |
-
valid_species = tuple(spec2idx.keys())
|
32 |
|
33 |
class SpeciesCover(BaseModel):
|
34 |
-
species: dict[
|
35 |
|
36 |
model_config = {
|
37 |
"json_schema_extra": {
|
38 |
"examples": [{
|
39 |
"species": {
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
}
|
44 |
}]
|
45 |
}
|
46 |
}
|
47 |
|
48 |
-
|
49 |
class EQRResult(BaseModel):
|
50 |
-
EQR: float
|
51 |
DVPI: int
|
52 |
version: str = VERSION
|
53 |
|
@@ -67,48 +105,47 @@ def eqr_to_dvpi(eqr: float) -> int:
|
|
67 |
else:
|
68 |
return 5
|
69 |
|
|
|
70 |
# FastAPI routes
|
71 |
@app.post("/dvpi")
|
72 |
def predict(cover_data: SpeciesCover) -> EQRResult:
|
73 |
"""Predict EQR and DVPI from species cover data"""
|
74 |
-
# Initialize input vector with zeros
|
75 |
-
input_vector = np.zeros((1, len(spec2idx)))
|
76 |
|
77 |
-
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
idx = spec2idx[species]
|
82 |
input_vector[0, idx] = cover
|
|
|
|
|
|
|
83 |
|
84 |
-
# Get prediction
|
85 |
input_name = ort_session.get_inputs()[0].name
|
86 |
ort_inputs = {input_name: input_vector.astype(np.float32)}
|
87 |
-
|
88 |
|
89 |
-
eqr = float(
|
|
|
90 |
dvpi = eqr_to_dvpi(eqr)
|
91 |
|
92 |
-
return EQRResult(EQR=round(eqr,
|
93 |
-
|
94 |
-
@app.get("/arter")
|
95 |
-
def list_species() -> dict:
|
96 |
-
"""Return list of valid species names"""
|
97 |
-
return {"species": list(spec2idx.keys())}
|
98 |
|
99 |
# Gradio app
|
100 |
-
def add_entry(species, cover, current_dict) -> tuple[
|
101 |
|
102 |
current_dict[species] = cover
|
103 |
-
|
104 |
return current_dict, current_dict
|
105 |
|
106 |
def gradio_predict(cover_data: dict):
|
107 |
|
108 |
if len(cover_data) == 0:
|
109 |
return {}
|
|
|
|
|
110 |
|
111 |
-
data = SpeciesCover(species=
|
112 |
result = predict(data)
|
113 |
|
114 |
return result.model_dump()
|
@@ -120,12 +157,13 @@ with gr.Blocks() as io:
|
|
120 |
|
121 |
with gr.Tab(label = "Beregner"):
|
122 |
|
123 |
-
gr.Markdown("Beregning er baseret på samfund af plantearter og deres dækningsgrad.
|
124 |
|
125 |
current_dict = gr.State({})
|
126 |
|
127 |
with gr.Row():
|
128 |
-
|
|
|
129 |
cover_input = gr.Number(label="Dækningsgrad (%)", minimum=0, maximum=100)
|
130 |
|
131 |
with gr.Row():
|
@@ -143,26 +181,28 @@ with gr.Blocks() as io:
|
|
143 |
add_btn.click(
|
144 |
add_entry,
|
145 |
inputs=[species_input, cover_input, current_dict],
|
146 |
-
outputs=[current_dict, list_display]
|
|
|
147 |
)
|
148 |
|
149 |
reset_btn.click(
|
150 |
reset_dict,
|
151 |
inputs=[],
|
152 |
-
outputs=[current_dict, list_display, results]
|
|
|
153 |
)
|
154 |
|
155 |
calc_btn.click(
|
156 |
gradio_predict,
|
157 |
inputs=[current_dict],
|
158 |
-
outputs=results
|
|
|
159 |
)
|
160 |
|
161 |
gr.Markdown("App og model af Kenneth Thorø Martinsen.")
|
162 |
|
163 |
with gr.Tab(label="Dokumentation"):
|
164 |
|
165 |
-
# Add markdown description with code to call the api in python
|
166 |
gr.Markdown("## Eksempel på brug af API")
|
167 |
gr.Markdown(f"API dokumentation kan findes på [{URL}/docs]({URL}/docs)")
|
168 |
gr.Markdown("### Python")
|
@@ -172,9 +212,9 @@ import json
|
|
172 |
|
173 |
data = {{
|
174 |
"species": {{
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
}}
|
179 |
}}
|
180 |
|
@@ -188,9 +228,9 @@ library(httr)
|
|
188 |
library(jsonlite)
|
189 |
|
190 |
data <- list(species = list(
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
))
|
195 |
|
196 |
response <- POST("{URL}/dvpi",
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel, Field
|
|
|
|
|
3 |
import numpy as np
|
4 |
import onnxruntime as ort
|
5 |
from typing_extensions import Annotated
|
6 |
import gradio as gr
|
7 |
+
from dotenv import load_dotenv
|
8 |
from cryptography.fernet import Fernet
|
9 |
import os
|
10 |
+
import pickle as pkl
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
|
14 |
# Model load
|
15 |
key = os.getenv("ONNX_KEY")
|
16 |
cipher = Fernet(key)
|
17 |
|
18 |
+
VERSION = "0.0.3"
|
19 |
TITLE = f"DVPI beregnings API (version {VERSION})"
|
20 |
+
DESCRIPTION = "Beregn Dansk Vandløbs Plante Indeks (DVPI) fra dækningsgrad af plantearter. Beregningen er baseret på en model som efterligner DVPI beregningsmetoden og er dermed ikke eksakt, usikkerheden er i gennemsnit **±0.017 EQR-enheder** og **R<sup>2</sup>=0.98** når den sammenlignes med den originale. Kan der ikke beregnes en værdi, returneres EQR=0 og DVPI=0."
|
21 |
+
URL = "http://localhost:8000" #https://kennethtm-dvpi.hf.space
|
22 |
|
23 |
# Load ONNX model and species mappings
|
24 |
+
with open("model_v3.bin", "rb") as f:
|
25 |
encrypted = f.read()
|
26 |
decrypted = cipher.decrypt(encrypted)
|
27 |
ort_session = ort.InferenceSession(decrypted)
|
28 |
|
29 |
+
# Load metadata
|
30 |
+
with open("metadata_v3.bin", "rb") as f:
|
31 |
+
encrypted = f.read()
|
32 |
+
decrypted = cipher.decrypt(encrypted)
|
33 |
+
metadata = pkl.loads(decrypted)
|
34 |
+
|
35 |
+
latinname2stancode = metadata["latinname2stancode"]
|
36 |
+
valid_taxacodes = metadata["valid_taxacodes"]
|
37 |
+
normalizer_1 = metadata["normalizer_1"]
|
38 |
+
normalizer_2 = metadata["normalizer_2"]
|
39 |
+
taxacode2idx = metadata["taxacode2idx"]
|
40 |
+
|
41 |
+
# Preprocess species
|
42 |
+
def preprocess_species(species: dict[int: float]) -> dict[int: float]:
|
43 |
+
# Apply filter 1
|
44 |
+
intermediate_species = {}
|
45 |
+
for sccode, value in species.items():
|
46 |
+
if sccode in normalizer_1:
|
47 |
+
new_sccode = normalizer_1[sccode]
|
48 |
+
if new_sccode in intermediate_species:
|
49 |
+
intermediate_species[new_sccode] += value
|
50 |
+
else:
|
51 |
+
intermediate_species[new_sccode] = value
|
52 |
+
|
53 |
+
# Apply filter 2
|
54 |
+
final_species = {}
|
55 |
+
for sccode, value in intermediate_species.items():
|
56 |
+
if sccode in normalizer_2:
|
57 |
+
if normalizer_2[sccode] is not None:
|
58 |
+
new_sccode = normalizer_2[sccode]
|
59 |
+
if new_sccode in final_species:
|
60 |
+
final_species[new_sccode] += value
|
61 |
+
else:
|
62 |
+
final_species[new_sccode] = value
|
63 |
+
else:
|
64 |
+
final_species[sccode] = value
|
65 |
+
|
66 |
+
# filter valid taxacodes
|
67 |
+
final_species = {taxacode: value for taxacode, value in final_species.items() if taxacode in valid_taxacodes}
|
68 |
+
|
69 |
+
return final_species
|
70 |
|
|
|
|
|
71 |
|
72 |
class SpeciesCover(BaseModel):
|
73 |
+
species: dict[int, Annotated[float, Field(ge=0, le=100)]]
|
74 |
|
75 |
model_config = {
|
76 |
"json_schema_extra": {
|
77 |
"examples": [{
|
78 |
"species": {
|
79 |
+
6458: 25.0,
|
80 |
+
4158: 15.5,
|
81 |
+
7208: 10.0
|
82 |
}
|
83 |
}]
|
84 |
}
|
85 |
}
|
86 |
|
|
|
87 |
class EQRResult(BaseModel):
|
88 |
+
EQR: float
|
89 |
DVPI: int
|
90 |
version: str = VERSION
|
91 |
|
|
|
105 |
else:
|
106 |
return 5
|
107 |
|
108 |
+
|
109 |
# FastAPI routes
|
110 |
@app.post("/dvpi")
|
111 |
def predict(cover_data: SpeciesCover) -> EQRResult:
|
112 |
"""Predict EQR and DVPI from species cover data"""
|
|
|
|
|
113 |
|
114 |
+
species_preproc = preprocess_species(cover_data.species)
|
115 |
+
|
116 |
+
input_vector = np.zeros((1, len(valid_taxacodes)))
|
117 |
|
118 |
+
for species, cover in species_preproc.items():
|
119 |
+
idx = taxacode2idx[species]
|
|
|
120 |
input_vector[0, idx] = cover
|
121 |
+
|
122 |
+
if np.sum(input_vector) == 0:
|
123 |
+
return EQRResult(EQR=0, DVPI=0)
|
124 |
|
|
|
125 |
input_name = ort_session.get_inputs()[0].name
|
126 |
ort_inputs = {input_name: input_vector.astype(np.float32)}
|
127 |
+
_, output_2 = ort_session.run(None, ort_inputs)
|
128 |
|
129 |
+
eqr = float(output_2[0][0])
|
130 |
+
eqr = 1 if eqr > 1 else eqr
|
131 |
dvpi = eqr_to_dvpi(eqr)
|
132 |
|
133 |
+
return EQRResult(EQR=round(eqr, 3), DVPI=dvpi)
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Gradio app
|
136 |
+
def add_entry(species, cover, current_dict) -> tuple[dict, str]:
|
137 |
|
138 |
current_dict[species] = cover
|
|
|
139 |
return current_dict, current_dict
|
140 |
|
141 |
def gradio_predict(cover_data: dict):
|
142 |
|
143 |
if len(cover_data) == 0:
|
144 |
return {}
|
145 |
+
|
146 |
+
cover_data_code = {latinname2stancode[species]: cover for species, cover in cover_data.items()}
|
147 |
|
148 |
+
data = SpeciesCover(species=cover_data_code)
|
149 |
result = predict(data)
|
150 |
|
151 |
return result.model_dump()
|
|
|
157 |
|
158 |
with gr.Tab(label = "Beregner"):
|
159 |
|
160 |
+
gr.Markdown("Beregning er baseret på samfund af plantearter og deres dækningsgrad. Når API'et bruges anvendes arternes [Stancode](https://dce.au.dk/overvaagning/stancode/stancodelister) (SC1064) - se 'Dokumentation' for eksempel på brug.")
|
161 |
|
162 |
current_dict = gr.State({})
|
163 |
|
164 |
with gr.Row():
|
165 |
+
species_choices = sorted(list(latinname2stancode.keys()))
|
166 |
+
species_input = gr.Dropdown(choices=species_choices, label="Vælg art")
|
167 |
cover_input = gr.Number(label="Dækningsgrad (%)", minimum=0, maximum=100)
|
168 |
|
169 |
with gr.Row():
|
|
|
181 |
add_btn.click(
|
182 |
add_entry,
|
183 |
inputs=[species_input, cover_input, current_dict],
|
184 |
+
outputs=[current_dict, list_display],
|
185 |
+
show_api=False
|
186 |
)
|
187 |
|
188 |
reset_btn.click(
|
189 |
reset_dict,
|
190 |
inputs=[],
|
191 |
+
outputs=[current_dict, list_display, results],
|
192 |
+
show_api=False
|
193 |
)
|
194 |
|
195 |
calc_btn.click(
|
196 |
gradio_predict,
|
197 |
inputs=[current_dict],
|
198 |
+
outputs=results,
|
199 |
+
show_api=False
|
200 |
)
|
201 |
|
202 |
gr.Markdown("App og model af Kenneth Thorø Martinsen.")
|
203 |
|
204 |
with gr.Tab(label="Dokumentation"):
|
205 |
|
|
|
206 |
gr.Markdown("## Eksempel på brug af API")
|
207 |
gr.Markdown(f"API dokumentation kan findes på [{URL}/docs]({URL}/docs)")
|
208 |
gr.Markdown("### Python")
|
|
|
212 |
|
213 |
data = {{
|
214 |
"species": {{
|
215 |
+
6458: 25.0,
|
216 |
+
4158: 15.5,
|
217 |
+
7208: 10.0
|
218 |
}}
|
219 |
}}
|
220 |
|
|
|
228 |
library(jsonlite)
|
229 |
|
230 |
data <- list(species = list(
|
231 |
+
6458 = 25.0,
|
232 |
+
4158 = 15.5,
|
233 |
+
7208 = 10.0
|
234 |
))
|
235 |
|
236 |
response <- POST("{URL}/dvpi",
|