Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,21 @@ model = whisper.load_model("small")
|
|
5 |
import torch
|
6 |
import torchaudio
|
7 |
from speechbrain.pretrained import SpectralMaskEnhancement
|
|
|
|
|
8 |
import gradio as gr
|
9 |
import openai
|
10 |
|
11 |
mes1 = [
|
12 |
-
{"role": "system", "content": "You are a TOEFL examiner. Help me improve my oral Englsih and give me feedback.
|
13 |
]
|
14 |
|
15 |
mes2 = [
|
16 |
-
{"role": "system", "content": "You are a mental health therapist. Your name is Tina.
|
17 |
]
|
18 |
|
19 |
mes3 = [
|
20 |
-
{"role": "system", "content": "You are my personal assistant. Your name is Alice.
|
21 |
]
|
22 |
|
23 |
res = []
|
@@ -80,8 +82,16 @@ def transcribe(apikey, upload, audio, choice1):
|
|
80 |
|
81 |
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
|
82 |
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
return [result.text, chat_response, "
|
85 |
|
86 |
output_1 = gr.Textbox(label="Speech to Text")
|
87 |
output_2 = gr.Textbox(label="ChatGPT Output")
|
|
|
5 |
import torch
|
6 |
import torchaudio
|
7 |
from speechbrain.pretrained import SpectralMaskEnhancement
|
8 |
+
from scipy.io import wavfile
|
9 |
+
import noisereduce as nr
|
10 |
import gradio as gr
|
11 |
import openai
|
12 |
|
13 |
mes1 = [
|
14 |
+
{"role": "system", "content": "You are a TOEFL examiner. Help me improve my oral Englsih and give me feedback."}
|
15 |
]
|
16 |
|
17 |
mes2 = [
|
18 |
+
{"role": "system", "content": "You are a mental health therapist. Your name is Tina."}
|
19 |
]
|
20 |
|
21 |
mes3 = [
|
22 |
+
{"role": "system", "content": "You are my personal assistant. Your name is Alice."}
|
23 |
]
|
24 |
|
25 |
res = []
|
|
|
82 |
|
83 |
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
|
84 |
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
|
85 |
+
|
86 |
+
rate, data = wavfile.read("enhanced.wav")
|
87 |
+
|
88 |
+
reduced_noise = nr.reduce_noise(y=data, sr=rate, stationary=True)
|
89 |
+
#reduced_noise = nr.reduce_noise(y = data, sr=rate, prop_decrease= 0.85)
|
90 |
+
#reduced_noise = nr.reduce_noise(y = data, sr=rate, thresh_n_mult_nonstationary=2, stationary=False)
|
91 |
+
|
92 |
+
wavfile.write("audio1.wav", rate, reduced_noise)
|
93 |
|
94 |
+
return [result.text, chat_response, "audio1.wav"]
|
95 |
|
96 |
output_1 = gr.Textbox(label="Speech to Text")
|
97 |
output_2 = gr.Textbox(label="ChatGPT Output")
|