File size: 8,740 Bytes
ec78133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43986c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec78133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43986c9
 
 
 
 
 
 
 
 
 
 
 
 
 
ec78133
43986c9
 
 
 
ec78133
43986c9
 
 
 
 
 
ec78133
43986c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec78133
 
 
 
43986c9
ec78133
43986c9
 
ec78133
 
 
43986c9
 
ec78133
43986c9
 
ec78133
 
 
43986c9
 
 
 
 
 
 
 
ec78133
 
 
 
43986c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# !git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS

import os
import shutil
import gradio as gr

import sys

import string
import time
import argparse
import json

import numpy as np
# import IPython
# from IPython.display import Audio

import torch

from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
  from TTS.utils.audio import AudioProcessor
except:
  from TTS.utils.audio import AudioProcessor


from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *

from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment

# from google.colab import files
import librosa

from scipy.io.wavfile import write, read

import subprocess


from TTS.api import TTS
tts = TTS(model_name="tts_models/zh-CN/baker/tacotron2-DDC-GST", progress_bar=False, gpu=True)
import whisper
model = whisper.load_model("small")
os.system('pip install voicefixer --upgrade')
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
import openai
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement

enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
run_opts={"device":"cuda"},
)

mes1 = [
    {"role": "system", "content": "You are a TOEFL examiner. Help me improve my oral Englsih and give me feedback."}
]

mes2 = [
    {"role": "system", "content": "You are a mental health therapist. Your name is Tina."}
]

mes3 = [
    {"role": "system", "content": "You are my personal assistant. Your name is Alice."}
]

res = []


'''
from google.colab import drive
drive.mount('/content/drive')

src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')

shutil.copy(src_path, dst_path)
'''

TTS_PATH = "TTS/"

# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally

# Paths definition

OUT_PATH = 'out/'

# create output path
os.makedirs(OUT_PATH, exist_ok=True)

# model vars 
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()

# load the config
C = load_config(CONFIG_PATH)

# load the audio processor
ap = AudioProcessor(**C.audio)

speaker_embedding = None

C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False

model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
  if "speaker_encoder" in key:
    del model_weights[key]

model.load_state_dict(model_weights)

model.eval()

if USE_CUDA:
    model = model.cuda()

# synthesize voice
use_griffin_lim = False

# Paths definition

CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"

# Load the Speaker encoder

SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)

# Define helper function

def compute_spec(ref_file):
  y, sr = librosa.load(ref_file, sr=ap.sample_rate)
  spec = ap.spectrogram(y)
  spec = torch.FloatTensor(spec).unsqueeze(0)
  return spec


def voice_conversion(apikey, ta, audio, choice1):

    openai.api_key = apikey

    # load audio and pad/trim it to fit 30 seconds
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    # make log-Mel spectrogram and move to the same device as the model
    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    # detect the spoken language
    _, probs = model.detect_language(mel)
    print(f"Detected language: {max(probs, key=probs.get)}")

    # decode the audio
    options = whisper.DecodingOptions()
    result = whisper.decode(model, mel, options)
    res.append(result.text)

    if choice1 == "TOEFL":
      messages = mes1
    elif choice1 == "Therapist":
      messages = mes2
    elif choice1 == "Alice":
      messages = mes3

    # chatgpt
    n = len(res)
    content = res[n-1]
    messages.append({"role": "user", "content": content})

    completion = openai.ChatCompletion.create(
      model = "gpt-3.5-turbo",
      messages = messages
    )

    chat_response = completion.choices[0].message.content

    messages.append({"role": "assistant", "content": chat_response})   

    tts.tts_to_file(chat_response, file_path="output.wav")

    target_audio = "target.wav"
    reference_audio = "output.wav"
    driving_audio = "output.wav"

    ra = "output.wav"
    da = "output.wav"

    write(target_audio, ta[0], ta[1])
    write(reference_audio, ra[0], ra[1])
    write(driving_audio, da[0], da[1])          
 
  # !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
  # !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
  # !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f

    files = [target_audio, reference_audio, driving_audio]

    for file in files:
        subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])

  # ta_ = read(target_audio)

    target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
    target_emb = torch.FloatTensor(target_emb).unsqueeze(0)

    driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
    driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)

  # Convert the voice

    driving_spec = compute_spec(driving_audio)
    y_lengths = torch.tensor([driving_spec.size(-1)])
    if USE_CUDA:
        ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
        ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
    else:
        ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
        ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()

  # print("Reference Audio after decoder:")
  # IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))

    voicefixer.restore(input=ref_wav_voc, # input wav file path
                    output="audio1.wav", # output wav file path
                    cuda=True, # whether to use gpu acceleration
                    mode = 0) # You can try out mode 0, 1, or 2 to find out the best result
    
    noisy = enhance_model.load_audio(
    "audio1.wav"
    ).unsqueeze(0)

    enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
    torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)

    return [result.text, chat_response, "enhanced.wav"]

c1=gr.Interface(
    fn=voice_conversion, 
    inputs=[
        gr.Textbox(lines=1, label = "请填写您的OpenAI-API-key"),
        gr.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"),
        gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"),
        gr.Radio(["TOEFL", "Therapist", "Alice"], label="TOEFL Examiner, Therapist Tina, or Assistant Alice?"),
    ],
    outputs=[
        gr.Textbox(label="Speech to Text"), gr.Textbox(label="ChatGPT Output"), gr.Audio(label="Audio with Custom Voice"),
    ],
    #theme="huggingface", 
    description = "🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
    )

c2=gr.Interface(    
    fn=voice_conversion, 
    inputs=[
        gr.Textbox(lines=1, label = "请填写您的OpenAI-API-key"),
        gr.Audio(source="microphone", label = "请上传您喜欢的声音,并尽量避免噪音", type="filepath"),
        gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"),
        gr.Radio(["TOEFL", "Therapist", "Alice"], label="TOEFL Examiner, Therapist Tina, or Assistant Alice?"),
    ],
    outputs=[
        gr.Textbox(label="Speech to Text"), gr.Textbox(label="ChatGPT Output"), gr.Audio(label="Audio with Custom Voice"),
    ], 
    #theme="huggingface", 
    description = "🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
    )

demo = gr.TabbedInterface([c1, c2], ["wav文件上传", "麦克风上传"], title = '🥳💬💕 - TalktoAI,随时随地,谈天说地!')
demo.launch()