Spaces:
Build error
Build error
File size: 8,740 Bytes
ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 ec78133 43986c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# !git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS
import os
import shutil
import gradio as gr
import sys
import string
import time
import argparse
import json
import numpy as np
# import IPython
# from IPython.display import Audio
import torch
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
from TTS.utils.audio import AudioProcessor
except:
from TTS.utils.audio import AudioProcessor
from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *
from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment
# from google.colab import files
import librosa
from scipy.io.wavfile import write, read
import subprocess
from TTS.api import TTS
tts = TTS(model_name="tts_models/zh-CN/baker/tacotron2-DDC-GST", progress_bar=False, gpu=True)
import whisper
model = whisper.load_model("small")
os.system('pip install voicefixer --upgrade')
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
import openai
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
run_opts={"device":"cuda"},
)
mes1 = [
{"role": "system", "content": "You are a TOEFL examiner. Help me improve my oral Englsih and give me feedback."}
]
mes2 = [
{"role": "system", "content": "You are a mental health therapist. Your name is Tina."}
]
mes3 = [
{"role": "system", "content": "You are my personal assistant. Your name is Alice."}
]
res = []
'''
from google.colab import drive
drive.mount('/content/drive')
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
shutil.copy(src_path, dst_path)
'''
TTS_PATH = "TTS/"
# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
# Paths definition
OUT_PATH = 'out/'
# create output path
os.makedirs(OUT_PATH, exist_ok=True)
# model vars
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()
# load the config
C = load_config(CONFIG_PATH)
# load the audio processor
ap = AudioProcessor(**C.audio)
speaker_embedding = None
C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False
model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
if "speaker_encoder" in key:
del model_weights[key]
model.load_state_dict(model_weights)
model.eval()
if USE_CUDA:
model = model.cuda()
# synthesize voice
use_griffin_lim = False
# Paths definition
CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
# Load the Speaker encoder
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
# Define helper function
def compute_spec(ref_file):
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
spec = ap.spectrogram(y)
spec = torch.FloatTensor(spec).unsqueeze(0)
return spec
def voice_conversion(apikey, ta, audio, choice1):
openai.api_key = apikey
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
res.append(result.text)
if choice1 == "TOEFL":
messages = mes1
elif choice1 == "Therapist":
messages = mes2
elif choice1 == "Alice":
messages = mes3
# chatgpt
n = len(res)
content = res[n-1]
messages.append({"role": "user", "content": content})
completion = openai.ChatCompletion.create(
model = "gpt-3.5-turbo",
messages = messages
)
chat_response = completion.choices[0].message.content
messages.append({"role": "assistant", "content": chat_response})
tts.tts_to_file(chat_response, file_path="output.wav")
target_audio = "target.wav"
reference_audio = "output.wav"
driving_audio = "output.wav"
ra = "output.wav"
da = "output.wav"
write(target_audio, ta[0], ta[1])
write(reference_audio, ra[0], ra[1])
write(driving_audio, da[0], da[1])
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f
files = [target_audio, reference_audio, driving_audio]
for file in files:
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])
# ta_ = read(target_audio)
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
target_emb = torch.FloatTensor(target_emb).unsqueeze(0)
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)
# Convert the voice
driving_spec = compute_spec(driving_audio)
y_lengths = torch.tensor([driving_spec.size(-1)])
if USE_CUDA:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
else:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()
# print("Reference Audio after decoder:")
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))
voicefixer.restore(input=ref_wav_voc, # input wav file path
output="audio1.wav", # output wav file path
cuda=True, # whether to use gpu acceleration
mode = 0) # You can try out mode 0, 1, or 2 to find out the best result
noisy = enhance_model.load_audio(
"audio1.wav"
).unsqueeze(0)
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
return [result.text, chat_response, "enhanced.wav"]
c1=gr.Interface(
fn=voice_conversion,
inputs=[
gr.Textbox(lines=1, label = "请填写您的OpenAI-API-key"),
gr.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"),
gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"),
gr.Radio(["TOEFL", "Therapist", "Alice"], label="TOEFL Examiner, Therapist Tina, or Assistant Alice?"),
],
outputs=[
gr.Textbox(label="Speech to Text"), gr.Textbox(label="ChatGPT Output"), gr.Audio(label="Audio with Custom Voice"),
],
#theme="huggingface",
description = "🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
)
c2=gr.Interface(
fn=voice_conversion,
inputs=[
gr.Textbox(lines=1, label = "请填写您的OpenAI-API-key"),
gr.Audio(source="microphone", label = "请上传您喜欢的声音,并尽量避免噪音", type="filepath"),
gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"),
gr.Radio(["TOEFL", "Therapist", "Alice"], label="TOEFL Examiner, Therapist Tina, or Assistant Alice?"),
],
outputs=[
gr.Textbox(label="Speech to Text"), gr.Textbox(label="ChatGPT Output"), gr.Audio(label="Audio with Custom Voice"),
],
#theme="huggingface",
description = "🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
)
demo = gr.TabbedInterface([c1, c2], ["wav文件上传", "麦克风上传"], title = '🥳💬💕 - TalktoAI,随时随地,谈天说地!')
demo.launch() |