NLLB-Translator / app.py
Kevin676's picture
Update app.py
cce8d20
raw
history blame
1.08 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
from langs import LANGS
TASK = "translation"
CKPT = "facebook/nllb-200-distilled-600M"
model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
tokenizer = AutoTokenizer.from_pretrained(CKPT)
device = 0 if torch.cuda.is_available() else -1
def translate(text):
"""
Translate the text from source lang to target lang
"""
src_lang = "zho-Hans"
tgt_lang = "eng_Latn"
max_length = 400
translation_pipeline = pipeline(TASK,
model=model,
tokenizer=tokenizer,
src_lang=src_lang,
tgt_lang=tgt_lang,
max_length=max_length,
device=device)
result = translation_pipeline(text)
return result[0]['translation_text']
gr.Interface(
translate,
[
gr.components.Textbox(label="Text"),
],
["text"],
).launch()