Spaces:
Runtime error
Runtime error
File size: 8,456 Bytes
8b18a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import tensorflow as tf
import tensorflow.keras.backend as K
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import cv2
import os
import shutil
from skimage.metrics import structural_similarity as ssim
beta = 1.0
# Loss for reveal network
def rev_loss(s_true, s_pred):
# Loss for reveal network is: beta * |S-S'|
return beta * K.sum(K.square(s_true - s_pred))
# Loss for the full model, used for preparation and hidding networks
def full_loss(y_true, y_pred):
# Loss for the full model is: |C-C'| + beta * |S-S'|
s_true, c_true = y_true[...,0:3], y_true[...,3:6]
s_pred, c_pred = y_pred[...,0:3], y_pred[...,3:6]
s_loss = rev_loss(s_true, s_pred)
c_loss = K.sum(K.square(c_true - c_pred))
return s_loss + c_loss
model = tf.keras.models.load_model("model.h5", custom_objects={'full_loss':
full_loss})
def preprocess_image(img):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
img = img.resize((124, 124), Image.ANTIALIAS)
img = np.array(img)
img = img / 255.0
return img
def steganography_image(imageO, imageF):
# Preprocess images
img_S = preprocess_image(imageO)
img_C = preprocess_image(imageF)
# Add batch dimension
img_S = np.expand_dims(img_S, axis=0)
img_C = np.expand_dims(img_C, axis=0)
# Predict with pre/loaded model
decoded = model.predict([img_S, img_C])
decoded_S, decoded_C = decoded[..., 0:3], decoded[..., 3:6]
# Post-process outputs
decoded_S = np.squeeze(decoded_S, axis=0) # Remove batch dimension
decoded_C = np.squeeze(decoded_C, axis=0) # Remove batch dimension
decoded_S = (decoded_S * 255).astype(np.uint8)
decoded_C = (decoded_C * 255).astype(np.uint8)
# Calculate absolute differences
diff_S = np.abs(decoded_S - (img_S.squeeze() * 255)).astype(np.uint8)
diff_C = np.abs(decoded_C - (img_C.squeeze() * 255)).astype(np.uint8)
# Create a plot of differences
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(diff_S)
ax[0].set_title('Difference in Secret Image')
ax[0].axis('off')
ax[1].imshow(diff_C)
ax[1].set_title('Difference in Cover Image')
ax[1].axis('off')
plt.tight_layout()
# Return images and plot
return decoded_S, decoded_C, fig
#Function to clear a folder
def clear_folder(path):
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
#Function to extract every frame of a video and save them in a folder
def extractImages(pathIn, pathOut):
clear_folder(pathOut)
if not os.path.exists(pathOut):
os.makedirs(pathOut)
vidcap = cv2.VideoCapture(pathIn)
success, image = vidcap.read()
count = 0
while success:
frame_path = os.path.join(pathOut, f"frame{count}.jpg")
success, image = vidcap.read()
if success:
resized_image = cv2.resize(image, (124, 124), interpolation=cv2.INTER_AREA)
cv2.imwrite(frame_path, resized_image)
print(f'Saved frame {count} to {frame_path}')
else:
print(f'Failed to read frame at count {count}')
count += 1
#Function to create a new video based on a folder of frames
def rebuildVideo(framesPath, outputPath, fps=30):
frame_files = sorted([f for f in os.listdir(framesPath) if f.endswith('.jpg')],
key=lambda x: int(x[5:-4]))
first_frame_path = os.path.join(framesPath, frame_files[0])
frame = cv2.imread(first_frame_path)
height, width, layers = frame.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(outputPath, fourcc, fps, (width, height))
for file in frame_files:
frame_path = os.path.join(framesPath, file)
frame = cv2.imread(frame_path)
out.write(frame)
out.release()
def calculate_ssim(img1, img2):
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
score, _ = ssim(img1_gray, img2_gray, full=True)
return score
def plot_metrics(metrics):
fig, ax = plt.subplots()
ax.plot(metrics, label="SSIM")
ax.set_xlabel("Frame")
ax.set_ylabel("SSIM")
ax.set_title("SSIM over Frames")
ax.legend()
ax.grid(True)
return fig
def process_frame(imageO, imageF):
img_S = preprocess_image(imageO)
img_C = preprocess_image(imageF)
img_S = np.expand_dims(img_S, axis=0)
img_C = np.expand_dims(img_C, axis=0)
decoded = model.predict([img_S, img_C])
decoded_S, decoded_C = decoded[..., 0:3], decoded[..., 3:6]
decoded_S = np.squeeze(decoded_S, axis=0)
decoded_C = np.squeeze(decoded_C, axis=0)
decoded_S = (decoded_S * 255).astype(np.uint8)
decoded_C = (decoded_C * 255).astype(np.uint8)
return decoded_S, decoded_C
def steganography_video(video_path1, video_path2):
input_frames_path = "Frames1"
input_frames_path2 = "Frames2"
output_frames_path = "Frames3"
output_frames_path2 = "Frames4"
output_video_path = "output_video.mp4"
output_video_path2 = "output_video2.mp4"
extractImages(video_path1, input_frames_path)
extractImages(video_path2, input_frames_path2)
input_frame_files = sorted([f for f in os.listdir(input_frames_path) if f.endswith('.jpg')],
key=lambda x: int(x[5:-4]))
clear_folder(output_frames_path)
clear_folder(output_frames_path2)
i = 0
ssim_scores = []
ssim_scores2 = []
for file in input_frame_files:
frame_path = os.path.join(input_frames_path, file)
frame_path2 = os.path.join(input_frames_path2, f"frame{i}.jpg")
frame = cv2.imread(frame_path)
try:
frame2 = cv2.imread(frame_path2)
except:
print("Second video is too short, will be cut up to the length of the first one")
break
if frame2 is None:
break
decoded_S, decoded_C = process_frame(frame, frame2)
decoded_S_path = os.path.join(output_frames_path, file)
cv2.imwrite(decoded_S_path, decoded_S)
decoded_C_path = os.path.join(output_frames_path2, file)
cv2.imwrite(decoded_C_path, decoded_C)
print(frame.shape)
print(decoded_S.shape)
print(frame2.shape)
print(decoded_C.shape)
ssim_scores.append(calculate_ssim(frame, decoded_S))
ssim_scores2.append(calculate_ssim(frame2, decoded_C))
i+=1
rebuildVideo(output_frames_path, output_video_path, fps=20)
rebuildVideo(output_frames_path2, output_video_path2, fps=20)
return output_video_path, output_video_path2, ssim_scores, ssim_scores2
example_secret_image = "Examples/secret.jpg"
example_cover_image = "Examples/cover.jpg"
example_cover_video = "Examples/cover.mp4"
example_secret_video = "Examples/secret.mp4"
with gr.Blocks() as demo:
with gr.Tab("Image Processing"):
image_input1 = gr.Image(label="Cover Image")
image_input2 = gr.Image(label="Secret Image")
image_output1 = gr.Image(label="Decoded Cover Image")
image_output2 = gr.Image(label="Decoded Secret Image")
plot = gr.Plot(label = "Noise behind each image")
btn_image = gr.Button("Process Images")
btn_image.click(
fn=steganography_image,
inputs=[image_input1, image_input2],
outputs=[image_output1, image_output2, plot]
)
with gr.Tab("Video Processing"):
video_input = gr.Video(label="Input Cover Video")
video_input2 = gr.Video(label="Input Secret Video")
video_output = gr.Video(label="Output Cover Video")
video_output2 = gr.Video(label="Output Secret Video")
plot_output = gr.Plot(label="SSIM over Frames for Cover")
plot_output2 = gr.Plot(label="SSIM over Frames for Secret")
btn_video = gr.Button("Process Video")
def process_video_and_plot(video_path, video_path2):
video_path, video_path2, ssim_scores, ssim_scores2 = steganography_video(video_path, video_path2)
plot = plot_metrics(ssim_scores)
plot2 = plot_metrics(ssim_scores2)
plot.show()
return video_path, video_path2, plot, plot2
btn_video.click(
fn=process_video_and_plot,
inputs=[video_input, video_input2],
outputs=[video_output, video_output2, plot_output, plot_output2]
)
demo.launch(debug=True, share = True) |