Spaces:
Runtime error
Runtime error
File size: 16,052 Bytes
a1fe393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
fine_tuning_dir = "fine_tuned/SSD/model/Negel_79_AVA_script_conv_train_conv_dev/checkpoint-50"
from typing import Any, Dict, List, Union
from dataclasses import dataclass
from transformers import Seq2SeqTrainer
from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor, Seq2SeqTrainingArguments, Seq2SeqTrainer, WhisperModel
import evaluate
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from random import sample
from sys import flags
import gradio as gr
import torchaudio
import torch.nn as nn
import jiwer
import numpy as np
from rich import print as rprint
from rich.progress import track
from transformers import pipeline
import argparse
import yaml
import torch
from pathlib import Path
from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC, AutoProcessor
from datasets import load_dataset, concatenate_datasets
from datasets import Dataset, Audio
import pdb
import string
import librosa
# local import
import sys
sys.path.append("src")
import lightning_module
torch.cuda.set_device("cuda:0")
audio_dir = "./data/Patient_sil_trim_16k_normed_5_snr_40"
healthy_dir = "./data/Healthy"
Fary_PAL_30 = "./data/Fary_PAL_p326_20230110_30"
John_p326 = "./data/John_p326/output"
John_video = "./data/20230103_video"
negel_79 = "./data/4_negel_79"
patient_T = "data/Patient_T/Patient_T"
patient_L = "data/Patient_L/Patient_L"
# Get Transcription, WER and PPM
"""
TODO:
[DONE]: Automatic generating Config
"""
sys.path.append("./src")
wer = evaluate.load("wer")
# root_path = Path(__file__).parents[1]
class ChangeSampleRate(nn.Module):
def __init__(self, input_rate: int, output_rate: int):
super().__init__()
self.output_rate = output_rate
self.input_rate = input_rate
def forward(self, wav: torch.tensor) -> torch.tensor:
# Only accepts 1-channel waveform input
wav = wav.view(wav.size(0), -1)
new_length = wav.size(-1) * self.output_rate // self.input_rate
indices = torch.arange(new_length) * (
self.input_rate / self.output_rate
)
round_down = wav[:, indices.long()]
round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)]
output = round_down * (1.0 - indices.fmod(1.0)).unsqueeze(
0
) + round_up * indices.fmod(1.0).unsqueeze(0)
return output
# resample and clean text data
def dataclean(example):
# pdb.set_trace()
if example['audio']['sampling_rate'] != 16000:
resampled_audio = librosa.resample(y=example['audio']['array'],
orig_sr=example['audio']['sampling_rate'],
target_sr=16000)
# torchaudio.transforms.Resample(example['audio']['sampling_rate'], 16000)
# resampled_audio = resampler(example['audio']['array'])
return {"audio": {"path": example['audio']['path'], "array": resampled_audio, "sampling_rate": 16000},
"transcription": example["transcription"].upper().translate(str.maketrans('', '', string.punctuation))}
else:
return {"transcription": example["transcription"].upper().translate(str.maketrans('', '', string.punctuation))}
processor = AutoFeatureExtractor.from_pretrained(
"facebook/wav2vec2-base-960h"
)
def prepare_dataset(batch):
audio = batch["audio"]
batch = processor(
audio["array"], sampling_rate=audio["sampling_rate"], text=batch['transcription'])
batch["input_length"] = len(batch["input_values"][0])
return batch
negel_79_dataset = load_dataset("audiofolder", data_dir=negel_79, split="train")
negel_79_dataset = negel_79_dataset.map(dataclean)
def train_dev_test_split(dataset: Dataset, dev_rate=0.1, test_rate=0.1, seed=1):
"""
input: dataset
dev_rate,
test_rate
seed
-------
Output:
dataset_dict{"train", "dev", "test"}
"""
train_dev_test = dataset.train_test_split(test_size=test_rate, seed=seed)
test = train_dev_test["test"]
train_dev = train_dev_test['train']
# pdb.set_trace()
if len(train_dev) <= int(len(dataset)*dev_rate):
train = Dataset.from_dict({"audio": [], "transcription": []})
dev = train_dev
else:
train_dev = train_dev.train_test_split(test_size=int(len(dataset)*dev_rate), seed=seed)
train = train_dev['train']
dev = train_dev['test']
return train, dev, test
# pdb.set_trace()
# P1tony_train, P1tony_dev, P1tony_test = train_dev_test_split(P1tony_dataset, dev_rate=0.5, test_rate=0.5, seed=1)
# P1tony_train_ = concatenate_datasets([P1tony_train,P1tony_scripted])
# pdb.set_trace()
Negel_79_train, Negel_79_dev, Negel_79_test = train_dev_test_split(negel_79_dataset, dev_rate=0.1, test_rate=0.1, seed=1)
# src_dataset = load_dataset("audiofolder", data_dir=audio_dir, split="train")
# src_dataset = src_dataset.map(dataclean)
# healthy_test_dataset = load_dataset(
# "audiofolder", data_dir=healthy_dir, split='train')
# healthy_test_dataset = healthy_test_dataset.map(dataclean)
# Fary_PAL_test_dataset = load_dataset(
# "audiofolder", data_dir=Fary_PAL_30, split='train')
# Fary_PAL_test_dataset = Fary_PAL_test_dataset.map(dataclean)
# John_p326_test_dataset = load_dataset(
# "audiofolder", data_dir=John_p326, split='train')
# John_p326_test_dataset = John_p326_test_dataset.map(dataclean)
# John_video_test_dataset = load_dataset(
# "audiofolder", data_dir=John_video, split='train')
# John_video_test_dataset = John_video_test_dataset.map(dataclean)
# patient_T_test_dataset = load_dataset("audiofolder", data_dir=patient_T, split='train')
# patient_T_test_dataset = patient_T_test_dataset.map(dataclean)
# patient_L_test_dataset = load_dataset("audiofolder", data_dir=patient_L, split='train')
# patient_L_test_dataset = patient_L_test_dataset.map(dataclean)
# pdb.set_trace()
# train_dev / test
# ds = src_dataset.train_test_split(test_size=0.1, seed=1)
# dataset_libri = load_dataset(
# "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# train_dev = ds['train']
# # train / dev
# train_dev = train_dev.train_test_split(
# test_size=int(len(src_dataset)*0.1), seed=1)
# # train/dev/test
# train = train_dev['train']
# test = ds['test']
# dev = train_dev['test']
# # pdb.set_trace()
# encoded_train = train.map(prepare_dataset, num_proc=4)
# encoded_dev = dev.map(prepare_dataset, num_proc=4)
# encoded_test = test.map(prepare_dataset, num_proc=4)
# encoded_healthy = healthy_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_Fary = Fary_PAL_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_John_p326 = John_p326_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_John_video = John_video_test_dataset.map(prepare_dataset, num_proc=4)
# pdb.set_trace()
WER = evaluate.load("wer")
# Whisper decoding
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
model = WhisperForConditionalGeneration.from_pretrained(
"openai/whisper-medium").to("cuda:0")
tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-medium", language="English", task="transcribe")
# Need to push tokenizer to hugginface/model to activate online API
# tokenizer.push_to_hub("KevinGeng/whipser_medium_en_PAL300_step25")
# import pdb
# pdb.set_trace()
feature_extractor = WhisperFeatureExtractor.from_pretrained(
"openai/whisper-medium")
def whisper_prepare_dataset(batch):
# load and resample audio data from 48 to 16kHz
audio = batch["audio"]
# compute log-Mel input features from input audio array
batch["input_features"] = feature_extractor(
audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
# encode target text to label ids
batch["labels"] = tokenizer(batch["transcription"]).input_ids
return batch
torch.cuda.empty_cache()
training_args = Seq2SeqTrainingArguments(
# change to a repo name of your choice
output_dir="./whisper-medium-PAL128-25step",
per_device_train_batch_size=8,
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
learning_rate=1e-5,
warmup_steps=100,
max_steps=1000,
gradient_checkpointing=True,
fp16=True,
evaluation_strategy="steps",
per_device_eval_batch_size=8,
predict_with_generate=True,
generation_max_length=512,
save_steps=100,
eval_steps=25,
logging_steps=100,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
push_to_hub=True,
)
def my_map_to_pred(batch):
# pdb.set_trace()
audio = batch["audio"]
input_features = processor(
audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
# batch["reference"] = whisper_processor.tokenizer._normalize(batch['text'])
batch["reference"] = processor.tokenizer._normalize(batch['transcription'])
with torch.no_grad():
# predicted_ids = whisper_model.generate(input_features.to("cuda"))[0]
predicted_ids = model.generate(input_features.to("cuda"))[0]
transcription = model.decode(predicted_ids)
batch["prediction"] = model.tokenizer._normalize(transcription)
return batch
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
processor: Any
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need different padding methods
# first treat the audio inputs by simply returning torch tensors
input_features = [{"input_features": feature["input_features"]}
for feature in features]
batch = self.processor.feature_extractor.pad(
input_features, return_tensors="pt")
# get the tokenized label sequences
label_features = [{"input_ids": feature["labels"]}
for feature in features]
# pad the labels to max length
labels_batch = self.processor.tokenizer.pad(
label_features, return_tensors="pt")
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(
labels_batch.attention_mask.ne(1), -100)
# if bos token is appended in previous tokenization step,
# cut bos token here as it's append later anyways
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
labels = labels[:, 1:]
batch["labels"] = labels
return batch
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)
def compute_metrics(pred):
pdb.set_trace()
pred_ids = pred.predictions
label_ids = pred.label_ids
# replace -100 with the pad_token_id
label_ids[label_ids == -100] = tokenizer.pad_token_id
# we do not want to group tokens when computing the metrics
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
wer = 100 * WER.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
encode_negel_79_train = Negel_79_train.map(whisper_prepare_dataset, num_proc=4)
encode_negel_79_dev = Negel_79_dev.map(whisper_prepare_dataset, num_proc=4)
encode_negel_79_test = Negel_79_test.map(whisper_prepare_dataset, num_proc=4)
pdb.set_trace()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
fine_tuned_model = WhisperForConditionalGeneration.from_pretrained(
fine_tuning_dir
).to("cuda")
# "fine_tuned/SSD/model/whipser_medium_TEP_patient_T"
# "./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400"
#"./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-200"
def fine_tuned_map_to_pred(batch):
# pdb.set_trace()
audio = batch["audio"]
input_features = processor(
audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
# batch["reference"] = whisper_processor.tokenizer._normalize(batch['text'])
batch["reference"] = processor.tokenizer._normalize(batch['transcription'])
with torch.no_grad():
# predicted_ids = whisper_model.generate(input_features.to("cuda"))[0]
predicted_ids = fine_tuned_model.generate(input_features.to("cuda"))[0]
transcription = tokenizer.decode(predicted_ids)
batch["prediction"] = tokenizer._normalize(transcription)
return batch
# output_dir="./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400",
testing_args = Seq2SeqTrainingArguments(
# change to a repo name of your choice
output_dir="fine_tuned/SSD/model/whipser_medium_TEP_patient_TL_TL",
per_device_train_batch_size=8,
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
learning_rate=1e-5,
warmup_steps=100,
max_steps=1000,
gradient_checkpointing=True,
fp16=True,
evaluation_strategy="steps",
per_device_eval_batch_size=8,
predict_with_generate=True,
generation_max_length=512,
save_steps=100,
eval_steps=25,
logging_steps=100,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
push_to_hub=False,
)
predict_trainer = Seq2SeqTrainer(
args=testing_args,
model=fine_tuned_model,
data_collator=data_collator,
compute_metrics=compute_metrics,
tokenizer=processor.feature_extractor,
)
# trainer.train()
# fine tuned
# z_result = encoded_test.map(fine_tuned_map_to_pred)
pdb.set_trace()
z_result= encode_negel_79_test.map(fine_tuned_map_to_pred)
# 0.4692737430167598
z = WER.compute(references=z_result['reference'], predictions=z_result['prediction'])
# pdb.set_trace()
# z_hel_result = encoded_healthy.map(fine_tuned_map_to_pred)
# z_hel = WER.compute(references=z_hel_result['reference'], predictions=z_hel_result['prediction'])
# # 0.1591610117211598
# # pdb.set_trace()
# # z_fary_result = encoded_Fary.map(fine_tuned_map_to_pred)
# # z_far = WER.compute(references=z_fary_result['reference'], predictions=z_fary_result['prediction'])
# # 0.1791044776119403
# z_patient_LT = encoded_patient_TL_test.map(fine_tuned_map_to_pred)
# z_patient_LT_result = WER.compute(references=z_patient_LT['reference'], predictions=z_patient_LT['prediction'])
# z_patient_L = encoded_patient_L_test.map(fine_tuned_map_to_pred)
# z_patient_L_result = WER.compute(references=z_patient_L['reference'], predictions=z_patient_L['prediction'])
# z_patient_T = encoded_patient_T_test.map(fine_tuned_map_to_pred)
# z_patient_T_result = WER.compute(references=z_patient_T['reference'], predictions=z_patient_T['prediction'])
# # z_john_p326_result = encoded_John_p326.map(fine_tuned_map_to_pred)
# # pdb.set_trace()
# # z_john_p326 = WER.compute(references=z_john_p326_result['reference'], predictions=z_john_p326_result['prediction'])
# # 0.4648241206030151
pdb.set_trace()
# # y_John_video= fine_tuned_trainer.predict(encoded_John_video)
# # metrics={'test_loss': 2.665189743041992, 'test_wer': 0.7222222222222222, 'test_runtime': 0.1633, 'test_samples_per_second': 48.979, 'test_steps_per_second': 6.122})
# pdb.set_trace()
# p326 training
# metrics={'test_loss': 0.4804028868675232, 'test_wer': 0.21787709497206703, 'test_runtime': 0.3594, 'test_samples_per_second': 44.517, 'test_steps_per_second': 5.565})
# hel metrics={'test_loss': 1.6363693475723267, 'test_wer': 0.17951881554595928, 'test_runtime': 3.8451, 'test_samples_per_second': 41.611, 'test_steps_per_second': 5.201})
# Fary: metrics={'t est_loss': 1.4633615016937256, 'test_wer': 0.5572139303482587, 'test_runtime': 0.6627, 'test_samples_per_second': 45.27, 'test_steps_per_second': 6.036})
# p326 large: metrics={'test_loss': 0.6568527817726135, 'test_wer': 0.2889447236180904, 'test_runtime': 0.7169, 'test_samples_per_second': 51.613, 'test_steps_per_second': 6.975})
|