File size: 16,052 Bytes
a1fe393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
fine_tuning_dir = "fine_tuned/SSD/model/Negel_79_AVA_script_conv_train_conv_dev/checkpoint-50"

from typing import Any, Dict, List, Union
from dataclasses import dataclass
from transformers import Seq2SeqTrainer
from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor, Seq2SeqTrainingArguments, Seq2SeqTrainer, WhisperModel
import evaluate
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from random import sample
from sys import flags
import gradio as gr
import torchaudio
import torch.nn as nn
import jiwer
import numpy as np
from rich import print as rprint
from rich.progress import track
from transformers import pipeline
import argparse
import yaml
import torch
from pathlib import Path
from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC, AutoProcessor
from datasets import load_dataset, concatenate_datasets
from datasets import Dataset, Audio
import pdb
import string
import librosa
# local import
import sys

sys.path.append("src")
import lightning_module

torch.cuda.set_device("cuda:0")

audio_dir = "./data/Patient_sil_trim_16k_normed_5_snr_40"
healthy_dir = "./data/Healthy"
Fary_PAL_30 = "./data/Fary_PAL_p326_20230110_30"
John_p326 = "./data/John_p326/output"
John_video = "./data/20230103_video"
negel_79 = "./data/4_negel_79"

patient_T = "data/Patient_T/Patient_T"
patient_L = "data/Patient_L/Patient_L"
# Get Transcription, WER and PPM
"""
TODO:
    [DONE]: Automatic generating Config
"""


sys.path.append("./src")


wer = evaluate.load("wer")

# root_path = Path(__file__).parents[1]


class ChangeSampleRate(nn.Module):
    def __init__(self, input_rate: int, output_rate: int):
        super().__init__()
        self.output_rate = output_rate
        self.input_rate = input_rate

    def forward(self, wav: torch.tensor) -> torch.tensor:
        # Only accepts 1-channel waveform input
        wav = wav.view(wav.size(0), -1)
        new_length = wav.size(-1) * self.output_rate // self.input_rate
        indices = torch.arange(new_length) * (
            self.input_rate / self.output_rate
        )
        round_down = wav[:, indices.long()]
        round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)]
        output = round_down * (1.0 - indices.fmod(1.0)).unsqueeze(
            0
        ) + round_up * indices.fmod(1.0).unsqueeze(0)
        return output

# resample and clean text data


def dataclean(example):
    # pdb.set_trace()
    if example['audio']['sampling_rate'] != 16000:
        resampled_audio = librosa.resample(y=example['audio']['array'],
                                           orig_sr=example['audio']['sampling_rate'],
                                           target_sr=16000)
        # torchaudio.transforms.Resample(example['audio']['sampling_rate'], 16000)
        # resampled_audio = resampler(example['audio']['array'])

        return {"audio": {"path": example['audio']['path'], "array": resampled_audio, "sampling_rate": 16000},
                "transcription": example["transcription"].upper().translate(str.maketrans('', '', string.punctuation))}
    else:
        return {"transcription": example["transcription"].upper().translate(str.maketrans('', '', string.punctuation))}

processor = AutoFeatureExtractor.from_pretrained(
    "facebook/wav2vec2-base-960h"
)

def prepare_dataset(batch):
    audio = batch["audio"]
    batch = processor(
        audio["array"], sampling_rate=audio["sampling_rate"], text=batch['transcription'])
    batch["input_length"] = len(batch["input_values"][0])
    return batch


negel_79_dataset = load_dataset("audiofolder", data_dir=negel_79, split="train")
negel_79_dataset = negel_79_dataset.map(dataclean)

def train_dev_test_split(dataset: Dataset, dev_rate=0.1, test_rate=0.1, seed=1):
    """
    input: dataset
    dev_rate,
    test_rate
    seed
    -------
    Output:
    dataset_dict{"train", "dev", "test"}
    """
    train_dev_test = dataset.train_test_split(test_size=test_rate, seed=seed)
    test = train_dev_test["test"]
    train_dev = train_dev_test['train']
    
    # pdb.set_trace()
    if len(train_dev) <= int(len(dataset)*dev_rate):
        train = Dataset.from_dict({"audio": [], "transcription": []})
        dev = train_dev
    else:
        train_dev = train_dev.train_test_split(test_size=int(len(dataset)*dev_rate), seed=seed)
        train = train_dev['train']
        dev = train_dev['test']
    return train, dev, test

# pdb.set_trace()
# P1tony_train, P1tony_dev, P1tony_test = train_dev_test_split(P1tony_dataset, dev_rate=0.5, test_rate=0.5, seed=1)
# P1tony_train_ = concatenate_datasets([P1tony_train,P1tony_scripted]) 
# pdb.set_trace()

Negel_79_train, Negel_79_dev, Negel_79_test = train_dev_test_split(negel_79_dataset, dev_rate=0.1, test_rate=0.1, seed=1)
 
# src_dataset = load_dataset("audiofolder", data_dir=audio_dir, split="train")
# src_dataset = src_dataset.map(dataclean)

# healthy_test_dataset = load_dataset(
#     "audiofolder", data_dir=healthy_dir, split='train')
# healthy_test_dataset = healthy_test_dataset.map(dataclean)

# Fary_PAL_test_dataset = load_dataset(
#     "audiofolder", data_dir=Fary_PAL_30, split='train')
# Fary_PAL_test_dataset = Fary_PAL_test_dataset.map(dataclean)

# John_p326_test_dataset = load_dataset(
#     "audiofolder", data_dir=John_p326, split='train')
# John_p326_test_dataset = John_p326_test_dataset.map(dataclean)

# John_video_test_dataset = load_dataset(
#     "audiofolder", data_dir=John_video, split='train')
# John_video_test_dataset = John_video_test_dataset.map(dataclean)

# patient_T_test_dataset = load_dataset("audiofolder", data_dir=patient_T, split='train')
# patient_T_test_dataset = patient_T_test_dataset.map(dataclean)

# patient_L_test_dataset = load_dataset("audiofolder", data_dir=patient_L, split='train')
# patient_L_test_dataset = patient_L_test_dataset.map(dataclean)
# pdb.set_trace()

# train_dev / test
# ds = src_dataset.train_test_split(test_size=0.1, seed=1)

# dataset_libri = load_dataset(
#     "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

# train_dev = ds['train']
# # train / dev
# train_dev = train_dev.train_test_split(
#     test_size=int(len(src_dataset)*0.1), seed=1)
# # train/dev/test
# train = train_dev['train']
# test = ds['test']
# dev = train_dev['test']

# # pdb.set_trace()
# encoded_train = train.map(prepare_dataset, num_proc=4)
# encoded_dev = dev.map(prepare_dataset, num_proc=4)
# encoded_test = test.map(prepare_dataset, num_proc=4)

# encoded_healthy = healthy_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_Fary = Fary_PAL_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_John_p326 = John_p326_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_John_video = John_video_test_dataset.map(prepare_dataset, num_proc=4)
# pdb.set_trace()

WER = evaluate.load("wer")

# Whisper decoding

processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
model = WhisperForConditionalGeneration.from_pretrained(
    "openai/whisper-medium").to("cuda:0")
tokenizer = WhisperTokenizer.from_pretrained(
    "openai/whisper-medium", language="English", task="transcribe")

# Need to push tokenizer to hugginface/model to activate online API

# tokenizer.push_to_hub("KevinGeng/whipser_medium_en_PAL300_step25")
# import pdb
# pdb.set_trace()

feature_extractor = WhisperFeatureExtractor.from_pretrained(
    "openai/whisper-medium")


def whisper_prepare_dataset(batch):
    # load and resample audio data from 48 to 16kHz
    audio = batch["audio"]

    # compute log-Mel input features from input audio array
    batch["input_features"] = feature_extractor(
        audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]

    # encode target text to label ids
    batch["labels"] = tokenizer(batch["transcription"]).input_ids
    return batch


torch.cuda.empty_cache()

training_args = Seq2SeqTrainingArguments(
    # change to a repo name of your choice
    output_dir="./whisper-medium-PAL128-25step",
    per_device_train_batch_size=8,
    gradient_accumulation_steps=1,  # increase by 2x for every 2x decrease in batch size
    learning_rate=1e-5,
    warmup_steps=100,
    max_steps=1000,
    gradient_checkpointing=True,
    fp16=True,
    evaluation_strategy="steps",
    per_device_eval_batch_size=8,
    predict_with_generate=True,
    generation_max_length=512,
    save_steps=100,
    eval_steps=25,
    logging_steps=100,
    report_to=["tensorboard"],
    load_best_model_at_end=True,
    metric_for_best_model="wer",
    greater_is_better=False,
    push_to_hub=True,
)


def my_map_to_pred(batch):
    # pdb.set_trace()
    audio = batch["audio"]
    input_features = processor(
        audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
    # batch["reference"] = whisper_processor.tokenizer._normalize(batch['text'])
    batch["reference"] = processor.tokenizer._normalize(batch['transcription'])

    with torch.no_grad():
        # predicted_ids = whisper_model.generate(input_features.to("cuda"))[0]
        predicted_ids = model.generate(input_features.to("cuda"))[0]
    transcription = model.decode(predicted_ids)
    batch["prediction"] = model.tokenizer._normalize(transcription)
    return batch


@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
    processor: Any

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need different padding methods
        # first treat the audio inputs by simply returning torch tensors
        input_features = [{"input_features": feature["input_features"]}
                          for feature in features]
        batch = self.processor.feature_extractor.pad(
            input_features, return_tensors="pt")

        # get the tokenized label sequences
        label_features = [{"input_ids": feature["labels"]}
                          for feature in features]
        # pad the labels to max length
        labels_batch = self.processor.tokenizer.pad(
            label_features, return_tensors="pt")

        # replace padding with -100 to ignore loss correctly
        labels = labels_batch["input_ids"].masked_fill(
            labels_batch.attention_mask.ne(1), -100)

        # if bos token is appended in previous tokenization step,
        # cut bos token here as it's append later anyways
        if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
            labels = labels[:, 1:]

        batch["labels"] = labels

        return batch


data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)


def compute_metrics(pred):
    pdb.set_trace()
    pred_ids = pred.predictions
    label_ids = pred.label_ids

    # replace -100 with the pad_token_id
    label_ids[label_ids == -100] = tokenizer.pad_token_id

    # we do not want to group tokens when computing the metrics
    pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
    label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)

    wer = 100 * WER.compute(predictions=pred_str, references=label_str)

    return {"wer": wer}

encode_negel_79_train = Negel_79_train.map(whisper_prepare_dataset, num_proc=4)
encode_negel_79_dev = Negel_79_dev.map(whisper_prepare_dataset, num_proc=4)
encode_negel_79_test = Negel_79_test.map(whisper_prepare_dataset, num_proc=4)
pdb.set_trace()
torch.cuda.empty_cache()

torch.cuda.empty_cache()

fine_tuned_model = WhisperForConditionalGeneration.from_pretrained(
    fine_tuning_dir
).to("cuda")
    # "fine_tuned/SSD/model/whipser_medium_TEP_patient_T"
    # "./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400"
    #"./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-200"


def fine_tuned_map_to_pred(batch):
    # pdb.set_trace()
    audio = batch["audio"]
    input_features = processor(
        audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
    # batch["reference"] = whisper_processor.tokenizer._normalize(batch['text'])
    batch["reference"] = processor.tokenizer._normalize(batch['transcription'])

    with torch.no_grad():
        # predicted_ids = whisper_model.generate(input_features.to("cuda"))[0]
        predicted_ids = fine_tuned_model.generate(input_features.to("cuda"))[0]
    transcription = tokenizer.decode(predicted_ids)
    batch["prediction"] = tokenizer._normalize(transcription)
    return batch


    # output_dir="./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400",
testing_args = Seq2SeqTrainingArguments(
    # change to a repo name of your choice
    output_dir="fine_tuned/SSD/model/whipser_medium_TEP_patient_TL_TL",
    per_device_train_batch_size=8,
    gradient_accumulation_steps=1,  # increase by 2x for every 2x decrease in batch size
    learning_rate=1e-5,
    warmup_steps=100,
    max_steps=1000,
    gradient_checkpointing=True,
    fp16=True,
    evaluation_strategy="steps",
    per_device_eval_batch_size=8,
    predict_with_generate=True,
    generation_max_length=512,
    save_steps=100,
    eval_steps=25,
    logging_steps=100,
    report_to=["tensorboard"],
    load_best_model_at_end=True,
    metric_for_best_model="wer",
    greater_is_better=False,
    push_to_hub=False,
)

predict_trainer = Seq2SeqTrainer(
    args=testing_args,
    model=fine_tuned_model,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
    tokenizer=processor.feature_extractor,
)

# trainer.train()
# fine tuned
# z_result = encoded_test.map(fine_tuned_map_to_pred)
pdb.set_trace()
z_result= encode_negel_79_test.map(fine_tuned_map_to_pred)
# 0.4692737430167598
z = WER.compute(references=z_result['reference'], predictions=z_result['prediction'])
# pdb.set_trace()
# z_hel_result = encoded_healthy.map(fine_tuned_map_to_pred)
# z_hel = WER.compute(references=z_hel_result['reference'], predictions=z_hel_result['prediction'])
# # 0.1591610117211598

# # pdb.set_trace()
# # z_fary_result = encoded_Fary.map(fine_tuned_map_to_pred)
# # z_far = WER.compute(references=z_fary_result['reference'], predictions=z_fary_result['prediction'])
# # 0.1791044776119403
# z_patient_LT = encoded_patient_TL_test.map(fine_tuned_map_to_pred)
# z_patient_LT_result = WER.compute(references=z_patient_LT['reference'], predictions=z_patient_LT['prediction'])
# z_patient_L = encoded_patient_L_test.map(fine_tuned_map_to_pred)
# z_patient_L_result = WER.compute(references=z_patient_L['reference'], predictions=z_patient_L['prediction'])
# z_patient_T = encoded_patient_T_test.map(fine_tuned_map_to_pred)
# z_patient_T_result = WER.compute(references=z_patient_T['reference'], predictions=z_patient_T['prediction'])

# # z_john_p326_result = encoded_John_p326.map(fine_tuned_map_to_pred)
# # pdb.set_trace() 

# # z_john_p326 = WER.compute(references=z_john_p326_result['reference'], predictions=z_john_p326_result['prediction'])
# # 0.4648241206030151
pdb.set_trace() 

# # y_John_video= fine_tuned_trainer.predict(encoded_John_video)
# # metrics={'test_loss': 2.665189743041992, 'test_wer': 0.7222222222222222, 'test_runtime': 0.1633, 'test_samples_per_second': 48.979, 'test_steps_per_second': 6.122})
# pdb.set_trace()

# p326 training
# metrics={'test_loss': 0.4804028868675232, 'test_wer': 0.21787709497206703, 'test_runtime': 0.3594, 'test_samples_per_second': 44.517, 'test_steps_per_second': 5.565})
# hel metrics={'test_loss': 1.6363693475723267, 'test_wer': 0.17951881554595928, 'test_runtime': 3.8451, 'test_samples_per_second': 41.611, 'test_steps_per_second': 5.201})
# Fary: metrics={'t est_loss': 1.4633615016937256, 'test_wer': 0.5572139303482587, 'test_runtime': 0.6627, 'test_samples_per_second': 45.27, 'test_steps_per_second': 6.036})
# p326 large: metrics={'test_loss': 0.6568527817726135, 'test_wer': 0.2889447236180904, 'test_runtime': 0.7169, 'test_samples_per_second': 51.613, 'test_steps_per_second': 6.975})