Spaces:
Runtime error
Runtime error
File size: 12,719 Bytes
9d0a4ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import pdb
import time
import json
import pprint
import random
import importlib
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict
import h5py
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import sys
sys.path.append('/data/home/qinghonglin/univtg')
from main.config import BaseOptions, setup_model
from main.dataset import DatasetQFVS, prepare_batch_inputs_qfvs, start_end_collate_qfvs
from utils.basic_utils import set_seed, AverageMeter, dict_to_markdown, save_json, save_jsonl, load_json, load_pickle
from utils.model_utils import count_parameters
from eval.qfvs import calculate_semantic_matching, load_videos_tag
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def eval_epoch(model, config, opt):
model.eval()
f1_sum = 0; p_sum = 0; r_sum = 0
assert len(config['test_videos']) == 1
video_id = config['test_videos'][0]
embedding = load_pickle(f"./data/qfvs/txt_clip/{config['txt_feature']}.pkl")
feat_type = config['vid_feature']
feat = h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5', 'r')
features = torch.tensor(feat['feature'][()]).unsqueeze(0).cuda()
# pdb.set_trace()
# seg_len = torch.tensor(feat['seg_len'][()]).unsqueeze(0).cuda()
# dim = features.shape[-1]
# ctx_l = seg_len.sum().cpu()
dim = features.shape[-1]
ctx_l = features.shape[1]
seg_len = torch.ones(ctx_l)
features = features.reshape(-1, dim)[:ctx_l]
tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
tef_ed = tef_st + 1.0 / ctx_l
tef = torch.stack([tef_st, tef_ed], dim=1).cuda() # (Lv, 2)
features = torch.cat([features, tef], dim=1) # (Lv, Dv+2)
transfer = {"Cupglass": "Glass",
"Musicalinstrument": "Instrument",
"Petsanimal": "Animal"}
for _,_,files in os.walk("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)):
evaluation_num=len(files)
for file in files:
summaries_GT=[]
with open("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)+"/"+file,"r") as f:
for line in f.readlines():
summaries_GT.append(int(line.strip()))
concept1, concept2 = file.split('_')[0:2]
##############
if concept1 in transfer:
concept1 = transfer[concept1]
if concept2 in transfer:
concept2 = transfer[concept2]
concept1 = embedding[concept1]
concept2 = embedding[concept2]
data = {
'features':features,
'seg_len': seg_len,
'tokens_pad1':torch.from_numpy(concept1),
'tokens_pad2':torch.from_numpy(concept2),
}
input1, input2, input_oracle, mask = prepare_batch_inputs_qfvs(start_end_collate_qfvs([data]), config, eval=True)
summaries_GT = [x - 1 for x in summaries_GT]
video_shots_tag = load_videos_tag(mat_path="./eval/Tags.mat")
output_type = 'pred_logits' # only saliency.
# if opt.f_loss_coef == 0:
# output_type = 'saliency_scores' # only saliency.
# elif opt.s_loss_intra_coef == 0:
# output_type = 'pred_logits' # cls is default.
# else:
# output_type = ['pred_logits', 'saliency_scores']
# if opt.qfvs_score_multiple > 0:
# output_type = ['pred_logits', 'saliency_scores']
with torch.no_grad():
if not isinstance(output_type, list):
score1 = model(**input1)[output_type].squeeze()
# score1 = score1.masked_select(mask)
score2 = model(**input2)[output_type].squeeze()
# score2 = score2.masked_select(mask)
score = model(**input_oracle)[output_type].squeeze()
# score = score.masked_select(mask)
else:
score1, score2, score = torch.zeros((int(mask.sum().item()))).cuda(), torch.zeros((int(mask.sum().item()))).cuda(), torch.zeros((int(mask.sum().item()))).cuda()
for output_t in output_type:
# score1 *= model(**input1)[output_t].squeeze() #.masked_select(mask)
# score2 *= model(**input2)[output_t].squeeze() #.masked_select(mask)
# score *= model(**input_oracle)[output_t].squeeze() #.masked_select(mask)
score1 += model(**input1)[output_t].squeeze() #.masked_select(mask)
score2 += model(**input2)[output_t].squeeze() #.masked_select(mask)
score += model(**input_oracle)[output_t].squeeze() #.masked_select(mask)
score = score
# score = score + score1 + score2
# since video4 features dim is greater than video_shots_tag.
score = score[:min(score.shape[0], video_shots_tag[video_id-1].shape[0])]
_, top_index = score.topk(int(score.shape[0] * config["top_percent"]))
p, r, f1 = calculate_semantic_matching(list(top_index.cpu().numpy()), summaries_GT, video_shots_tag, video_id=video_id-1)
f1_sum+=f1; r_sum+=r; p_sum+=p
return {'F': round(100* f1_sum/evaluation_num,2) ,
'R': round(100* r_sum/evaluation_num,2) ,
'P': round(100* p_sum/evaluation_num,2) }
def train_epoch(model, criterion, train_loader, optimizer, opt, config, epoch_i, tb_writer):
model.train()
criterion.train()
# init meters
time_meters = defaultdict(AverageMeter)
loss_meters = defaultdict(AverageMeter)
timer_dataloading = time.time()
loss_total = 0
# optimizer.zero_grad()
for batch_idx, batch in enumerate(tqdm(train_loader)):
time_meters["dataloading_time"].update(time.time() - timer_dataloading)
timer_start = time.time()
model_input1, model_input2, model_input_oracle, \
model_gt1, model_gt2, model_gt_oracle, \
mask_GT = prepare_batch_inputs_qfvs(batch, config)
time_meters["prepare_inputs_time"].update(time.time() - timer_start)
timer_start = time.time()
output1 = model(**model_input1)
output2 = model(**model_input2)
output_oracle = model(**model_input_oracle)
loss_dict = {}
loss_dict1 = criterion(output1, model_gt1)
loss_dict2 = criterion(output2, model_gt2)
loss_dict3 = criterion(output_oracle, model_gt_oracle)
weight_dict = criterion.weight_dict
for k in loss_dict1.keys():
loss_dict[k] = loss_dict1[k] + loss_dict2[k] + loss_dict3[k]
# print(loss_dict)
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
loss_total += losses.item()
time_meters["model_forward_time"].update(time.time() - timer_start)
timer_start = time.time()
# optimizer.zero_grad()
optimizer.zero_grad()
losses.backward()
if opt.grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
# if ((batch_idx + 1) % opt.bsz==0) or (batch_idx == len(train_loader)-1):
# pdb.set_trace()
# optimizer.step()
# optimizer.zero_grad()
optimizer.step()
time_meters["model_backward_time"].update(time.time() - timer_start)
timer_dataloading = time.time()
return round(loss_total / len(train_loader), 2)
# train in single domain.
def train(model, criterion, optimizer, lr_scheduler, train_loader, opt, config):
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"
prev_best_score = {'Fscore':0, 'Precision':0, 'Recall':0}
if opt.start_epoch is None:
start_epoch = -1 if opt.eval_init else 0
else:
start_epoch = opt.start_epoch
val_score = eval_epoch(model, config, opt)
tb_writer.add_scalar(f"Eval/QFVS-V{config['test_videos'][0]}-fscore", float(val_score['F']), 0)
logger.info(f"[Epoch {0}] [Fscore: {val_score['F']} / {prev_best_score['Fscore']}]"
f" [Precision: {val_score['P']} / {prev_best_score['Precision']}]"
f" [Recall: {val_score['R']} / {prev_best_score['Recall']}]")
for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
if epoch_i > -1:
loss_epoch = train_epoch(model, criterion, train_loader, optimizer, opt, config, epoch_i, tb_writer)
lr_scheduler.step()
eval_epoch_interval = opt.eval_epoch
if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
with torch.no_grad():
val_score = eval_epoch(model, config, opt)
tb_writer.add_scalar(f"Eval/QFVS-V{config['test_videos'][0]}-fscore", float(val_score['F']), epoch_i+1)
logger.info(f"[Epoch {epoch_i + 1}, Loss {loss_epoch}] [Fscore: {val_score['F']} / {prev_best_score['Fscore']}]"
f" [Precision: {val_score['P']} / {prev_best_score['Precision']}]"
f" [Recall: {val_score['R']} / {prev_best_score['Recall']}]")
if prev_best_score['Fscore'] < val_score['F']:
prev_best_score['Fscore'] = val_score['F']
prev_best_score['Precision'] = val_score['P']
prev_best_score['Recall'] = val_score['R']
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_V{config['test_videos'][0]}_best.ckpt"))
tb_writer.close()
return prev_best_score
def start_training():
logger.info("Setup config, data and model...")
opt = BaseOptions().parse()
set_seed(opt.seed)
config = load_json("./main/config_qfvs.json")
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
# key -> test video; value -> training videos.
qfvs_split = {1: [2, 3, 4],
2: [1, 3, 4],
3: [1, 2, 4],
4: [1, 2, 3]}
# qfvs_split = {
# 2: [1, 3, 4],
# 3: [1, 2, 4],
# }
scores_videos = {}
for test_id, splits in qfvs_split.items():
logger.info(f"Start Training {opt.dset_name}: {test_id}")
config['train_videos'] = qfvs_split[test_id]
config['test_videos'] = [test_id]
train_dataset = DatasetQFVS(config)
train_loader = DataLoader(train_dataset, batch_size=opt.bsz, collate_fn=start_end_collate_qfvs, shuffle=True, num_workers=opt.num_workers)
model, criterion, optimizer, lr_scheduler = setup_model(opt)
count_parameters(model)
best_score = train(model, criterion, optimizer, lr_scheduler, train_loader, opt, config)
scores_videos['V'+str(test_id)] = best_score
# save the final results.
avg_fscore = sum([v['Fscore'] for k, v in scores_videos.items()]) / len(scores_videos)
avg_precision = sum([v['Precision'] for k, v in scores_videos.items()]) / len(scores_videos)
avg_recall = sum([v['Recall'] for k, v in scores_videos.items()]) / len(scores_videos)
scores_videos['avg'] = {'Fscore':avg_fscore, 'Precision':avg_precision, 'Recall':avg_recall}
save_metrics_path = os.path.join(opt.results_dir, f"best_{opt.dset_name}_{opt.eval_split_name}_preds_metrics.json")
save_json( scores_videos, save_metrics_path, save_pretty=True, sort_keys=False)
tb_writer.add_scalar(f"Eval/QFVS-avg-fscore", round(avg_fscore, 2), 1)
tb_writer.add_text(f"Eval/QFVS-{opt.dset_name}", dict_to_markdown(scores_videos, max_str_len=None))
tb_writer.close()
print(scores_videos)
return
if __name__ == '__main__':
start_training()
results = logger.info("\n\n\nFINISHED TRAINING!!!") |