File size: 21,874 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os
import pdb
import time
import torch
import logging
import argparse
import importlib
from utils.basic_utils import mkdirp, remkdirp, \
    load_json, save_json, make_zipfile, dict_to_markdown

logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
                    datefmt="%Y-%m-%d %H:%M:%S",
                    level=logging.INFO)

class BaseOptions(object):
    saved_option_filename = "opt.json"
    ckpt_filename = "model.ckpt"
    tensorboard_log_dir = "tensorboard_log"
    train_log_filename = "train.log.txt"
    eval_log_filename = "eval.log.txt"

    def __init__(self):
        self.parser = None
        self.initialized = False
        self.opt = None

    def initialize(self):
        self.initialized = True
        parser = argparse.ArgumentParser()
        # * Running configs
        parser.add_argument("--dset_type", type=str, choices=["mr", "hl", "vs", "vlp"])    # moment retrieval, highlight detection, and video summarization
        parser.add_argument("--dset_name", type=str, choices=["qvhighlights", "charades", "anet", "tvsum", "youtube", "summe", "ego4d", "qfvs", "video2gif", "coin", "hacs", "vlp", "videocc", "tacos"])
        parser.add_argument("--domain_name", type=str, default=None)
        parser.add_argument("--model_id", type=str, default="moment_detr")
        parser.add_argument("--exp_id", type=str, default="debug", help="id of this run, required at training")
        parser.add_argument("--device", type=int, default=0, help="0 cuda, -1 cpu")
        parser.add_argument("--gpu_id", type=int, default=0)
        parser.add_argument("--debug", action="store_true",
                            help="debug (fast) mode, break all loops, do not load all data into memory.")
        parser.add_argument("--seed", type=int, default=2018, help="random seed")

        # * DDP
        parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')


        parser.add_argument("--eval_split_name", type=str, default="val",
                            help="should match keys in video_duration_idx_path, must set for VCMR")
        parser.add_argument("--data_ratio", type=float, default=1.0,
                            help="how many training and eval data to use. 1.0: use all, 0.1: use 10%."
                                 "Use small portion for debug purposes. Note this is different from --debug, "
                                 "which works by breaking the loops, typically they are not used together.")
        parser.add_argument("--results_root", type=str, default="results")
        parser.add_argument("--num_workers", type=int, default=0,
                            help="num subprocesses used to load the data, 0: use main process")
        parser.add_argument("--no_pin_memory", action="store_true",
                            help="Don't use pin_memory=True for dataloader. "
                                 "ref: https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/4")

        # * Training configs
        parser.add_argument("--bsz", type=int, default=32, help="mini-batch size")
        parser.add_argument("--n_epoch", type=int, default=200, help="number of epochs to run")
        parser.add_argument("--max_es_cnt", type=int, default=200,
                            help="number of epochs to early stop, use -1 to disable early stop")
        parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
        parser.add_argument("--lr_drop", type=int, default=400, help="drop learning rate to 1/10 every lr_drop epochs")
        parser.add_argument("--lr_gamma", type=float, default=0.1, help="lr reduces the gamma times after the `drop' epoch")
        parser.add_argument("--lr_warmup", type=float, default=-1, help="linear warmup scheme")
        parser.add_argument("--wd", type=float, default=1e-4, help="weight decay")
        parser.add_argument("--grad_clip", type=float, default=0.1, help="perform gradient clip, -1: disable")

        # ** Loss coefficients
        # *** boundary branch
        parser.add_argument("--span_loss_type", default="l1", type=str, choices=['l1', 'ce'],
                            help="l1: (center-x, width) regression. ce: (st_idx, ed_idx) classification.")
        parser.add_argument('--b_loss_coef', default=10, type=float)    # boundary regression e.g., l1
        parser.add_argument('--g_loss_coef', default=1, type=float) # giou loss
        # *** foreground branch
        parser.add_argument('--eos_coef', default=0.1, type=float, help="relative classification weight of the no-object class")
        parser.add_argument('--f_loss_coef', default=4, type=float) # cls loss for foreground
        # *** saliency branch
        parser.add_argument("--s_loss_intra_coef", type=float, default=1., help="inter-video (frame-level) saliency loss e.g. momentdetr saliency loss")
        parser.add_argument("--s_loss_inter_coef", type=float, default=0., help="intra-video (sample-level) saliency loss,")

        # * Eval configs
        parser.add_argument("--main_metric", type=str, default="MR-full-mAP")
        parser.add_argument('--eval_mode', default=None, type=str,
                            help="how to integrate foreground and saliency for better prediction")
        parser.add_argument("--eval_bsz", type=int, default=100,
                            help="mini-batch size at inference, for query")
        parser.add_argument("--eval_epoch", type=int, default=5,
                            help="number of epochs for once inference")
        parser.add_argument("--eval_init", action="store_true", help="evaluate model before training i.e. `epoch=-1'")
        parser.add_argument("--save_interval", type=int, default=50)

        parser.add_argument("--resume", type=str, default=None,
                            help="checkpoint path to resume or evaluate, without --resume_all this only load weights")
        parser.add_argument("--resume_dir", type=str, default=None,
                            help="checkpoint path to resume or evaluate, without --resume_all this only load weights")
        parser.add_argument("--resume_all", action="store_true",
                            help="if --resume_all, load optimizer/scheduler/epoch as well")
        parser.add_argument("--start_epoch", type=int, default=None,
                            help="if None, will be set automatically when using --resume_all")

        # ** NMS configs
        parser.add_argument("--no_sort_results", action="store_true",
                            help="do not sort results, use this for moment query visualization")
        parser.add_argument("--max_before_nms", type=int, default=10)
        parser.add_argument("--max_after_nms", type=int, default=10)
        parser.add_argument("--conf_thd", type=float, default=0.0, help="only keep windows with conf >= conf_thd")
        parser.add_argument("--nms_thd", type=float, default=-1,
                            help="additionally use non-maximum suppression "
                                 "(or non-minimum suppression for distance)"
                                 "to post-processing the predictions. "
                                 "-1: do not use nms. [0, 1]")

        # * Dataset configs
        parser.add_argument("--use_cache",  type=int, default=-1, help="Preload features into cache for fast IO")
        parser.add_argument("--max_q_l", type=int, default=75)
        parser.add_argument("--max_v_l", type=int, default=75)
        parser.add_argument("--clip_length", type=float, default=1.0)
        parser.add_argument("--clip_len_list", type=int, nargs='+')
        parser.add_argument("--max_windows", type=int, default=5)

        parser.add_argument("--add_easy_negative", type=int, default=1)
        parser.add_argument("--easy_negative_only", type=int, default=1)
        parser.add_argument("--round_multiple", type=int, default=1)

        parser.add_argument("--train_path", type=str, default=None, nargs='+')
        parser.add_argument("--eval_path", type=str, default=None,
                            help="Evaluating during training, for Dev set. If None, will only do training, ")
        parser.add_argument("--train_path_list", type=str, nargs='+')
        parser.add_argument("--eval_path_list", type=str, nargs='+')
        parser.add_argument("--feat_root_list", type=str, nargs='+')

        parser.add_argument("--no_norm_vfeat", action="store_true", help="Do not do normalize video feat")
        parser.add_argument("--no_norm_tfeat", action="store_true", help="Do not do normalize text feat")
        parser.add_argument("--v_feat_dirs", type=str, nargs="+",
                            help="video feature dirs. If more than one, will concat their features. "
                                 "Note that sub ctx features are also accepted here.")
        parser.add_argument("--t_feat_dir", type=str, help="text/query feature dir")
        parser.add_argument("--v_feat_dim", type=int, help="video feature dim")
        parser.add_argument("--t_feat_dim", type=int, help="text/query feature dim")
        parser.add_argument("--ctx_mode", type=str, default="video_tef")
        parser.add_argument("--v_feat_types", type=str)
        parser.add_argument("--t_feat_type", type=str)

        # * Model configs
        parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
                            help="Type of positional embedding to use on top of the image features")
        parser.add_argument("--n_input_proj", type=int, default=2, help="#layers to vid/txt projector")
        parser.add_argument("--temperature", type=float, default=0.07, help="temperature nce contrastive_align_loss")

        # ** Transformer
        parser.add_argument('--enc_layers', default=4, type=int,
                            help="Number of encoding layers in the transformer")
        parser.add_argument('--sub_enc_layers', default=2, type=int,
                            help="Number of encoding layers in the video / text transformer in albef-style.")
        parser.add_argument('--dec_layers', default=2, type=int,
                            help="Number of decoding layers in the transformer, N/A for UniVTG")
        parser.add_argument('--dim_feedforward', default=1024, type=int,
                            help="Intermediate size of the feedforward layers in the transformer blocks")
        parser.add_argument('--hidden_dim', default=256, type=int,
                            help="Size of the embeddings (dimension of the transformer)")
        parser.add_argument('--input_dropout', default=0.5, type=float,
                            help="Dropout applied in input")
        parser.add_argument('--dropout', default=0.1, type=float,
                            help="Dropout applied in the transformer")
        parser.add_argument('--droppath', default=0.1, type=float,
                            help="Droppath applied in the transformer")
        parser.add_argument("--txt_drop_ratio", default=0, type=float,
                            help="drop txt_drop_ratio tokens from text input. 0.1=10%")
        parser.add_argument("--use_txt_pos", action="store_true", help="use position_embedding for text as well.")
        parser.add_argument('--nheads', default=8, type=int,
                            help="Number of attention heads inside the transformer's attentions")
        parser.add_argument('--num_queries', default=10, type=int,
                            help="Number of query slots")
        parser.add_argument('--pre_norm', action='store_true')

        # ** momentdetr configs e.g. Matcher, saliency margin
        parser.add_argument('--set_cost_span', default=10, type=float,
                            help="L1 span coefficient in the matching cost")
        parser.add_argument('--set_cost_giou', default=1, type=float,
                            help="giou span coefficient in the matching cost")
        parser.add_argument('--set_cost_class', default=4, type=float,
                            help="Class coefficient in the matching cost")
        parser.add_argument("--saliency_margin", type=float, default=0.2)
        parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_true',
                            help="Disables auxiliary decoding losses (loss at each layer)")

        # * Query-Force Video Summarization
        parser.add_argument("--max_segment_num", type=int, default=20)
        parser.add_argument("--max_frame_num", type=int, default=200)
        parser.add_argument("--top_percent", type=float, default=0.02)

        parser.add_argument("--qfvs_vid_feature", type=str, default='fps1')
        parser.add_argument("--qfvs_txt_feature", type=str, default='query')
        parser.add_argument("--qfvs_split", type=int, default=-1)

        parser.add_argument("--qfvs_dense_shot", type=int, default=-1)
        parser.add_argument("--qfvs_score_ensemble", type=int, default=-1)
        parser.add_argument("--qfvs_score_gather", type=int, default=-1)
        parser.add_argument("--qfvs_loss_gather", type=int, default=-1)
        self.parser = parser

    def display_save(self, opt):
        args = vars(opt)
        # Display settings
        print(dict_to_markdown(vars(opt), max_str_len=120))
        # Save settings
        if not isinstance(self, TestOptions):
            option_file_path = os.path.join(opt.results_dir, self.saved_option_filename)  # not yaml file indeed
            save_json(args, option_file_path, save_pretty=True)

    def parse(self, args=None):
        if not self.initialized:
            self.initialize()
        opt = self.parser.parse_args()
        
        if args is not None:
            args_dict = vars(args)
            opt_dict = vars(opt)
            for key, value in args_dict.items():
                opt_dict[key] = value
            opt = argparse.Namespace(**opt_dict)    
            opt.model_dir = os.path.dirname(opt.resume)
            torch.cuda.set_device(opt.gpu_id)
            
        if opt.debug:
            opt.results_root = os.path.sep.join(opt.results_root.split(os.path.sep)[:-1] + ["debug_results", ])
            opt.num_workers = 0

        if isinstance(self, TestOptions):
            # modify model_dir to absolute path
            # opt.model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "results", opt.model_dir)
            opt.model_dir = os.path.dirname(opt.resume)
            saved_options = load_json(os.path.join(opt.model_dir, self.saved_option_filename))
            for arg in saved_options:  # use saved options to overwrite all BaseOptions args.
                if arg not in ["results_root", "num_workers", "nms_thd", "debug",  "max_before_nms", "max_after_nms"
                               "max_pred_l", "min_pred_l", "gpu_id",
                               "resume", "resume_all", "no_sort_results",
                               "eval_path", "eval_split_name"]:
                            #    "dset_name", "v_feat_dirs", "t_feat_dir"]:
                    setattr(opt, arg, saved_options[arg])
            # opt.no_core_driver = True
            if opt.eval_results_dir is not None:
                opt.results_dir = opt.eval_results_dir
        else:
            if opt.exp_id is None:
                raise ValueError("--exp_id is required for at a training option!")

            # ctx_str = opt.ctx_mode + "_sub" if any(["sub_ctx" in p for p in opt.v_feat_dirs]) else opt.ctx_mode

            if 'debug' not in opt.exp_id:
                opt.results_dir = os.path.join(opt.results_root, "-".join([opt.dset_type, opt.dset_name]), "-".join([opt.exp_id, opt.v_feat_types, opt.t_feat_type, time.strftime("%Y_%m_%d_%H")]))
            else:
                opt.results_dir = os.path.join(opt.results_root, "-".join([opt.dset_type, opt.dset_name]), opt.exp_id) # debug mode.

            if int(opt.local_rank) in [0, -1]:
                # mkdirp(opt.results_dir)
                remkdirp(opt.results_dir)   # remove dir and remkdir it.

                # save a copy of current code
                code_dir = os.path.dirname(os.path.realpath(__file__))
                code_zip_filename = os.path.join(opt.results_dir, "code.zip")
                make_zipfile(code_dir, code_zip_filename,
                            enclosing_dir="code",
                            exclude_dirs_substring="results",
                            exclude_dirs=["results", "debug_results", "__pycache__"],
                            exclude_extensions=[".pyc", ".ipynb", ".swap"], )

        if int(opt.local_rank) in [0, -1]:
            self.display_save(opt)
            opt.ckpt_filepath = os.path.join(opt.results_dir, self.ckpt_filename)
            opt.train_log_filepath = os.path.join(opt.results_dir, self.train_log_filename)
            opt.eval_log_filepath = os.path.join(opt.results_dir, self.eval_log_filename)
            opt.tensorboard_log_dir = os.path.join(opt.results_dir, self.tensorboard_log_dir)
            # opt.device = torch.device("cuda" if opt.device >= 0 else "cpu")

        if int(opt.local_rank) in [-1]:
            torch.cuda.set_device(opt.gpu_id)
        opt.pin_memory = not opt.no_pin_memory

        if opt.local_rank == -1:
            torch.cuda.set_device(opt.gpu_id)

        opt.use_tef = "tef" in opt.ctx_mode
        opt.use_video = "video" in opt.ctx_mode
        if not opt.use_video:
            opt.v_feat_dim = 0
        if opt.use_tef:
            opt.v_feat_dim += 2

        self.opt = opt
        return opt

class TestOptions(BaseOptions):
    """add additional options for evaluating"""

    def initialize(self):
        BaseOptions.initialize(self)
        # also need to specify --eval_split_name
        self.parser.add_argument("--eval_id", type=str, help="evaluation id")
        self.parser.add_argument("--eval_results_dir", type=str, default=None,
                                 help="dir to save results, if not set, fall back to training results_dir")
        self.parser.add_argument("--model_dir", type=str,
                                 help="dir contains the model file, will be converted to absolute path afterwards")

class WarmupStepLR(torch.optim.lr_scheduler.StepLR):
    def __init__(self, optimizer, warmup_steps, step_size, gamma=0.1, last_epoch=-1):
        self.warmup_steps = warmup_steps
        self.step_size = step_size
        self.gamma = gamma
        super(WarmupStepLR, self).__init__(optimizer, step_size, gamma=self.gamma, last_epoch=last_epoch)
    def get_lr(self):
        if not self._get_lr_called_within_step:
            import warnings
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.", DeprecationWarning)
        # e.g. warmup_steps = 10, case: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21...
        if self.last_epoch == self.warmup_steps or(self.last_epoch % self.step_size != 0 and self.last_epoch > self.warmup_steps):
            return [group['lr'] for group in self.optimizer.param_groups]
        # e.g. warmup_steps = 10, case: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
        elif self.last_epoch < self.warmup_steps:
            return [group['initial_lr'] * float(self.last_epoch + 1) / float(self.warmup_steps) for group in self.optimizer.param_groups]
        
        
        # e.g. warmup_steps = 10, case: 10, 20, 30, 40...
        return [group['lr'] * self.gamma
                for group in self.optimizer.param_groups]
    def _get_closed_form_lr(self):
        if self.last_epoch <= self.warmup_steps:
            return [base_lr * float(self.last_epoch) / (self.warmup_steps) for base_lr in self.base_lrs]
        else:
            return [base_lr * self.gamma ** ((self.last_epoch -  self.warmup_steps)// self.step_size) for base_lr in self.base_lrs]

def setup_model(opt):
    """setup model/optimizer/scheduler and load checkpoints when needed"""
    logger.info("setup model/optimizer/scheduler")

    importer = importlib.import_module('.'.join(['model', opt.model_id]))
    model, criterion = importer.build_model(opt)

    if int(opt.device) >= 0:
        logger.info("CUDA enabled.")
        model.to(opt.gpu_id)
        criterion.to(opt.gpu_id)

    param_dicts = [{"params": [p for n, p in model.named_parameters() if p.requires_grad]}]
    optimizer = torch.optim.AdamW(param_dicts, lr=opt.lr, weight_decay=opt.wd)

    if opt.lr_warmup != -1 and opt.lr_drop > 0:
        lr_scheduler = WarmupStepLR(optimizer, warmup_steps=opt.lr_warmup[0], step_size=opt.lr_drop, gamma=opt.lr_gamma)
    
    elif opt.lr_warmup != -1:
        from transformers import get_constant_schedule_with_warmup
        lr_scheduler =  get_constant_schedule_with_warmup(optimizer, opt.lr_warmup[0])

    elif opt.lr_drop > 0:
        lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, opt.lr_drop, gamma=opt.lr_gamma)

    if opt.resume is not None:
        logger.info(f"Load checkpoint from {opt.resume}")
        checkpoint = torch.load(opt.resume, map_location="cpu")
        
        for key in list(checkpoint["model"].keys()):
            checkpoint["model"][key.replace('module.', '')] = checkpoint["model"].pop(key)
        model.load_state_dict(checkpoint["model"])

        if opt.resume_all:
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            opt.start_epoch = checkpoint['epoch'] + 1
        logger.info(f"Loaded model saved at epoch {checkpoint['epoch']} from checkpoint: {opt.resume}")
    else:
        logger.warning("If you intend to evaluate the model, please specify --resume with ckpt path")

    return model, criterion, optimizer, lr_scheduler