Spaces:
Runtime error
Runtime error
File size: 22,911 Bytes
9d0a4ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
DETR model and criterion classes.
"""
import torch
import torch.nn.functional as F
from torch import nn
from utils.span_utils import generalized_temporal_iou, span_cxw_to_xx
from model.transformer import build_transformer
from model.matcher import build_matcher
from model.position_encoding import build_position_encoding
@torch.no_grad()
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k
output: (#items, #classes)
target: int,
"""
maxk = max(topk)
num_items = output.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target)
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / num_items))
return res
class Model(nn.Module):
""" This is the Moment-DETR module that performs moment localization. """
def __init__(self, transformer, position_embed, txt_position_embed, txt_dim, vid_dim,
num_queries, input_dropout, aux_loss=False,
contrastive_align_loss=False, contrastive_hdim=64,
max_v_l=75, span_loss_type="l1", use_txt_pos=False, n_input_proj=2):
""" Initializes the model.
Parameters:
transformer: torch module of the transformer architecture. See transformer.py
position_embed: torch module of the position_embedding, See position_encoding.py
txt_position_embed: position_embedding for text
txt_dim: int, text query input dimension
vid_dim: int, video feature input dimension
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
Moment-DETR can detect in a single video.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
contrastive_align_loss: If true, perform span - tokens contrastive learning
contrastive_hdim: dimension used for projecting the embeddings before computing contrastive loss
max_v_l: int, maximum #clips in videos
span_loss_type: str, one of [l1, ce]
l1: (center-x, width) regression.
ce: (st_idx, ed_idx) classification.
# foreground_thd: float, intersection over prediction >= foreground_thd: labeled as foreground
# background_thd: float, intersection over prediction <= background_thd: labeled background
"""
super().__init__()
self.num_queries = num_queries
self.transformer = transformer
self.position_embed = position_embed
self.txt_position_embed = txt_position_embed
hidden_dim = transformer.d_model
self.span_loss_type = span_loss_type
self.max_v_l = max_v_l
span_pred_dim = 2 if span_loss_type == "l1" else max_v_l * 2
self.span_embed = MLP(hidden_dim, hidden_dim, span_pred_dim, 3)
self.class_embed = nn.Linear(hidden_dim, 2) # 0: background, 1: foreground
self.use_txt_pos = use_txt_pos
self.n_input_proj = n_input_proj
# self.foreground_thd = foreground_thd
# self.background_thd = background_thd
self.query_embed = nn.Embedding(num_queries, hidden_dim)
relu_args = [True] * 3
relu_args[n_input_proj-1] = False
self.input_txt_proj = nn.Sequential(*[
LinearLayer(txt_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
][:n_input_proj])
self.input_vid_proj = nn.Sequential(*[
LinearLayer(vid_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
][:n_input_proj])
self.contrastive_align_loss = contrastive_align_loss
if contrastive_align_loss:
self.contrastive_align_projection_query = nn.Linear(hidden_dim, contrastive_hdim)
self.contrastive_align_projection_txt = nn.Linear(hidden_dim, contrastive_hdim)
self.contrastive_align_projection_vid = nn.Linear(hidden_dim, contrastive_hdim)
self.saliency_proj = nn.Linear(hidden_dim, 1)
self.aux_loss = aux_loss
def forward(self, src_txt, src_txt_mask, src_vid, src_vid_mask):
"""The forward expects two tensors:
- src_txt: [batch_size, L_txt, D_txt]
- src_txt_mask: [batch_size, L_txt], containing 0 on padded pixels,
will convert to 1 as padding later for transformer
- src_vid: [batch_size, L_vid, D_vid]
- src_vid_mask: [batch_size, L_vid], containing 0 on padded pixels,
will convert to 1 as padding later for transformer
It returns a dict with the following elements:
- "pred_spans": The normalized boxes coordinates for all queries, represented as
(center_x, width). These values are normalized in [0, 1],
relative to the size of each individual image (disregarding possible padding).
See PostProcess for information on how to retrieve the unnormalized bounding box.
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
src_vid = self.input_vid_proj(src_vid)
src_txt = self.input_txt_proj(src_txt)
src = torch.cat([src_vid, src_txt], dim=1) # (bsz, L_vid+L_txt, d)
mask = torch.cat([src_vid_mask, src_txt_mask], dim=1).bool() # (bsz, L_vid+L_txt)
# TODO should we remove or use different positional embeddings to the src_txt?
pos_vid = self.position_embed(src_vid, src_vid_mask) # (bsz, L_vid, d)
pos_txt = self.txt_position_embed(src_txt) if self.use_txt_pos else torch.zeros_like(src_txt) # (bsz, L_txt, d)
# pos_txt = torch.zeros_like(src_txt)
# pad zeros for txt positions
pos = torch.cat([pos_vid, pos_txt], dim=1)
# (#layers, bsz, #queries, d), (bsz, L_vid+L_txt, d)
hs, memory = self.transformer(src, ~mask, self.query_embed.weight, pos)
outputs_class = self.class_embed(hs) # (#layers, batch_size, #queries, #classes)
outputs_coord = self.span_embed(hs) # (#layers, bsz, #queries, 2 or max_v_l * 2)
if self.span_loss_type == "l1":
outputs_coord = outputs_coord.sigmoid()
out = {'pred_logits': outputs_class[-1], 'pred_spans': outputs_coord[-1]}
txt_mem = memory[:, src_vid.shape[1]:] # (bsz, L_txt, d)
vid_mem = memory[:, :src_vid.shape[1]] # (bsz, L_vid, d)
if self.contrastive_align_loss:
proj_queries = F.normalize(self.contrastive_align_projection_query(hs), p=2, dim=-1)
proj_txt_mem = F.normalize(self.contrastive_align_projection_txt(txt_mem), p=2, dim=-1)
proj_vid_mem = F.normalize(self.contrastive_align_projection_vid(vid_mem), p=2, dim=-1)
out.update(dict(
proj_queries=proj_queries[-1],
proj_txt_mem=proj_txt_mem,
proj_vid_mem=proj_vid_mem
))
out["saliency_scores"] = self.saliency_proj(vid_mem).squeeze(-1) # (bsz, L_vid)
if self.aux_loss:
# assert proj_queries and proj_txt_mem
out['aux_outputs'] = [
{'pred_logits': a, 'pred_spans': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
if self.contrastive_align_loss:
assert proj_queries is not None
for idx, d in enumerate(proj_queries[:-1]):
out['aux_outputs'][idx].update(dict(proj_queries=d, proj_txt_mem=proj_txt_mem))
return out
# @torch.jit.unused
# def _set_aux_loss(self, outputs_class, outputs_coord):
# # this is a workaround to make torchscript happy, as torchscript
# # doesn't support dictionary with non-homogeneous values, such
# # as a dict having both a Tensor and a list.
# return [{'pred_logits': a, 'pred_spans': b}
# for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
class SetCriterion(nn.Module):
""" This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, matcher, weight_dict, eos_coef, losses, temperature, span_loss_type, max_v_l,
saliency_margin=1):
""" Create the criterion.
Parameters:
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
temperature: float, temperature for NCE loss
span_loss_type: str, [l1, ce]
max_v_l: int,
saliency_margin: float
"""
super().__init__()
self.matcher = matcher
self.weight_dict = weight_dict
self.losses = losses
self.temperature = temperature
self.span_loss_type = span_loss_type
self.max_v_l = max_v_l
self.saliency_margin = saliency_margin
# foreground and background classification
self.foreground_label = 0
self.background_label = 1
self.eos_coef = eos_coef
empty_weight = torch.ones(2)
empty_weight[-1] = self.eos_coef # lower weight for background (index 1, foreground index 0)
self.register_buffer('empty_weight', empty_weight)
def loss_spans(self, outputs, targets, indices):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "spans" containing a tensor of dim [nb_tgt_spans, 2]
The target spans are expected in format (center_x, w), normalized by the image size.
"""
assert 'pred_spans' in outputs
targets = targets["span_labels"]
idx = self._get_src_permutation_idx(indices)
src_spans = outputs['pred_spans'][idx] # (#spans, max_v_l * 2)
tgt_spans = torch.cat([t['spans'][i] for t, (_, i) in zip(targets, indices)], dim=0) # (#spans, 2)
if self.span_loss_type == "l1":
loss_span = F.l1_loss(src_spans, tgt_spans, reduction='none')
loss_giou = 1 - torch.diag(generalized_temporal_iou(span_cxw_to_xx(src_spans), span_cxw_to_xx(tgt_spans)))
else: # ce
n_spans = src_spans.shape[0]
src_spans = src_spans.view(n_spans, 2, self.max_v_l).transpose(1, 2)
loss_span = F.cross_entropy(src_spans, tgt_spans, reduction='none')
# giou
# src_span_indices = src_spans.max(1)[1] # (#spans, 2)
# src_span_indices[:, 1] += 1 # ed non-inclusive [st, ed)
#
# tgt_span_indices = tgt_spans
# tgt_span_indices[:, 1] += 1
# loss_giou = 1 - torch.diag(generalized_temporal_iou(src_span_indices, tgt_span_indices))
loss_giou = loss_span.new_zeros([1])
losses = {}
losses['loss_b'] = loss_span.mean()
losses['loss_g'] = loss_giou.mean()
return losses
def loss_labels(self, outputs, targets, indices, log=True):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
# TODO add foreground and background classifier. use all non-matched as background.
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits'] # (batch_size, #queries, #classes=2)
# idx is a tuple of two 1D tensors (batch_idx, src_idx), of the same length == #objects in batch
idx = self._get_src_permutation_idx(indices)
target_classes = torch.full(src_logits.shape[:2], self.background_label,
dtype=torch.int64, device=src_logits.device) # (batch_size, #queries)
target_classes[idx] = self.foreground_label
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight, reduction="none")
losses = {'loss_f': loss_ce.mean()}
if log:
# TODO this should probably be a separate loss, not hacked in this one here
losses['class_error'] = 100 - accuracy(src_logits[idx], self.foreground_label)[0]
return losses
def loss_saliency(self, outputs, targets, indices, log=True):
"""higher scores for positive clips"""
if "saliency_pos_labels" not in targets:
return {"loss_s_intra": 0}
saliency_scores = outputs["saliency_scores"] # (N, L)
pos_indices = targets["saliency_pos_labels"] # (N, #pairs)
neg_indices = targets["saliency_neg_labels"] # (N, #pairs)
num_pairs = pos_indices.shape[1] # typically 2 or 4
batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
pos_scores = torch.stack(
[saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
neg_scores = torch.stack(
[saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
loss_saliency = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
/ (len(pos_scores) * num_pairs) * 2 # * 2 to keep the loss the same scale
return {"loss_s_intra": loss_saliency}
def loss_contrastive_align(self, outputs, targets, indices, log=True):
"""encourage higher scores between matched query span and input text"""
normalized_text_embed = outputs["proj_txt_mem"] # (bsz, #tokens, d) text tokens
normalized_img_embed = outputs["proj_queries"] # (bsz, #queries, d)
logits = torch.einsum(
"bmd,bnd->bmn", normalized_img_embed, normalized_text_embed) # (bsz, #queries, #tokens)
logits = logits.sum(2) / self.temperature # (bsz, #queries)
idx = self._get_src_permutation_idx(indices)
positive_map = torch.zeros_like(logits, dtype=torch.bool)
positive_map[idx] = True
positive_logits = logits.masked_fill(~positive_map, 0)
pos_term = positive_logits.sum(1) # (bsz, )
num_pos = positive_map.sum(1) # (bsz, )
neg_term = logits.logsumexp(1) # (bsz, )
loss_nce = - pos_term / num_pos + neg_term # (bsz, )
losses = {"loss_contrastive_align": loss_nce.mean()}
return losses
def loss_contrastive_align_vid_txt(self, outputs, targets, indices, log=True):
"""encourage higher scores between matched query span and input text"""
# TODO (1) align vid_mem and txt_mem;
# TODO (2) change L1 loss as CE loss on 75 labels, similar to soft token prediction in MDETR
normalized_text_embed = outputs["proj_txt_mem"] # (bsz, #tokens, d) text tokens
normalized_img_embed = outputs["proj_queries"] # (bsz, #queries, d)
logits = torch.einsum(
"bmd,bnd->bmn", normalized_img_embed, normalized_text_embed) # (bsz, #queries, #tokens)
logits = logits.sum(2) / self.temperature # (bsz, #queries)
idx = self._get_src_permutation_idx(indices)
positive_map = torch.zeros_like(logits, dtype=torch.bool)
positive_map[idx] = True
positive_logits = logits.masked_fill(~positive_map, 0)
pos_term = positive_logits.sum(1) # (bsz, )
num_pos = positive_map.sum(1) # (bsz, )
neg_term = logits.logsumexp(1) # (bsz, )
loss_nce = - pos_term / num_pos + neg_term # (bsz, )
losses = {"loss_contrastive_align": loss_nce.mean()}
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx # two 1D tensors of the same length
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, **kwargs):
loss_map = {
"spans": self.loss_spans,
"labels": self.loss_labels,
"contrastive_align": self.loss_contrastive_align,
"saliency": self.loss_saliency,
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, **kwargs)
def forward(self, outputs, targets):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
# Retrieve the matching between the outputs of the last layer and the targets
# list(tuples), each tuple is (pred_span_indices, tgt_span_indices)
indices = self.matcher(outputs_without_aux, targets)
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
if "saliency" == loss: # skip as it is only in the top layer
continue
kwargs = {}
l_dict = self.get_loss(loss, aux_outputs, targets, indices, **kwargs)
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
class MLP(nn.Module):
""" Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class LinearLayer(nn.Module):
"""linear layer configurable with layer normalization, dropout, ReLU."""
def __init__(self, in_hsz, out_hsz, layer_norm=True, dropout=0.1, relu=True):
super(LinearLayer, self).__init__()
self.relu = relu
self.layer_norm = layer_norm
if layer_norm:
self.LayerNorm = nn.LayerNorm(in_hsz)
layers = [
nn.Dropout(dropout),
nn.Linear(in_hsz, out_hsz)
]
self.net = nn.Sequential(*layers)
def forward(self, x):
"""(N, L, D)"""
if self.layer_norm:
x = self.LayerNorm(x)
x = self.net(x)
if self.relu:
x = F.relu(x, inplace=True)
return x # (N, L, D)
def build_model(args):
# the `num_classes` naming here is somewhat misleading.
# it indeed corresponds to `max_obj_id + 1`, where max_obj_id
# is the maximum id for a class in your dataset. For example,
# COCO has a max_obj_id of 90, so we pass `num_classes` to be 91.
# As another example, for a dataset that has a single class with id 1,
# you should pass `num_classes` to be 2 (max_obj_id + 1).
# For more details on this, check the following discussion
# https://github.com/facebookresearch/moment_bert/issues/108#issuecomment-650269223
device = torch.device(args.device)
transformer = build_transformer(args)
position_embedding, txt_position_embedding = build_position_encoding(args)
model = Model(
transformer,
position_embedding,
txt_position_embedding,
txt_dim=args.t_feat_dim,
vid_dim=args.v_feat_dim,
num_queries=args.num_queries,
input_dropout=args.input_dropout,
aux_loss=args.aux_loss,
# contrastive_align_loss=args.contrastive_align_loss,
# contrastive_hdim=args.contrastive_hdim,
span_loss_type=args.span_loss_type,
use_txt_pos=args.use_txt_pos,
n_input_proj=args.n_input_proj,
)
matcher = build_matcher(args)
weight_dict = {"loss_b": args.b_loss_coef,
"loss_g": args.g_loss_coef,
"loss_f": args.f_loss_coef,
"loss_s_intra": args.s_loss_intra_coef,
"loss_s_inter": args.s_loss_inter_coef}
# if args.contrastive_align_loss:
# weight_dict["loss_contrastive_align"] = args.contrastive_align_loss_coef
# TODO this is a hack
if args.aux_loss:
aux_weight_dict = {}
for i in range(args.dec_layers - 1):
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items() if k != "loss_saliency"})
weight_dict.update(aux_weight_dict)
losses = ['spans', 'labels', 'saliency']
# if args.contrastive_align_loss:
# losses += ["contrastive_align"]
criterion = SetCriterion(
matcher=matcher, weight_dict=weight_dict, losses=losses,
eos_coef=args.eos_coef, temperature=args.temperature,
span_loss_type=args.span_loss_type, max_v_l=args.max_v_l,
saliency_margin=args.saliency_margin
)
criterion.to(device)
return model, criterion
|