File size: 22,911 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
DETR model and criterion classes.
"""
import torch
import torch.nn.functional as F
from torch import nn

from utils.span_utils import generalized_temporal_iou, span_cxw_to_xx

from model.transformer import build_transformer
from model.matcher import build_matcher
from model.position_encoding import build_position_encoding

@torch.no_grad()
def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k
    output: (#items, #classes)
    target: int,
    """
    maxk = max(topk)
    num_items = output.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target)

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0)
        res.append(correct_k.mul_(100.0 / num_items))
    return res

class Model(nn.Module):
    """ This is the Moment-DETR module that performs moment localization. """

    def __init__(self, transformer, position_embed, txt_position_embed, txt_dim, vid_dim,
                 num_queries, input_dropout, aux_loss=False,
                 contrastive_align_loss=False, contrastive_hdim=64,
                 max_v_l=75, span_loss_type="l1", use_txt_pos=False, n_input_proj=2):
        """ Initializes the model.
        Parameters:
            transformer: torch module of the transformer architecture. See transformer.py
            position_embed: torch module of the position_embedding, See position_encoding.py
            txt_position_embed: position_embedding for text
            txt_dim: int, text query input dimension
            vid_dim: int, video feature input dimension
            num_queries: number of object queries, ie detection slot. This is the maximal number of objects
                         Moment-DETR can detect in a single video.
            aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
            contrastive_align_loss: If true, perform span - tokens contrastive learning
            contrastive_hdim: dimension used for projecting the embeddings before computing contrastive loss
            max_v_l: int, maximum #clips in videos
            span_loss_type: str, one of [l1, ce]
                l1: (center-x, width) regression.
                ce: (st_idx, ed_idx) classification.
            # foreground_thd: float, intersection over prediction >= foreground_thd: labeled as foreground
            # background_thd: float, intersection over prediction <= background_thd: labeled background
        """
        super().__init__()
        self.num_queries = num_queries
        self.transformer = transformer
        self.position_embed = position_embed
        self.txt_position_embed = txt_position_embed
        hidden_dim = transformer.d_model
        self.span_loss_type = span_loss_type
        self.max_v_l = max_v_l
        span_pred_dim = 2 if span_loss_type == "l1" else max_v_l * 2
        self.span_embed = MLP(hidden_dim, hidden_dim, span_pred_dim, 3)
        self.class_embed = nn.Linear(hidden_dim, 2)  # 0: background, 1: foreground
        self.use_txt_pos = use_txt_pos
        self.n_input_proj = n_input_proj
        # self.foreground_thd = foreground_thd
        # self.background_thd = background_thd
        self.query_embed = nn.Embedding(num_queries, hidden_dim)
        relu_args = [True] * 3
        relu_args[n_input_proj-1] = False
        self.input_txt_proj = nn.Sequential(*[
            LinearLayer(txt_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
        ][:n_input_proj])
        self.input_vid_proj = nn.Sequential(*[
            LinearLayer(vid_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
        ][:n_input_proj])
        self.contrastive_align_loss = contrastive_align_loss
        if contrastive_align_loss:
            self.contrastive_align_projection_query = nn.Linear(hidden_dim, contrastive_hdim)
            self.contrastive_align_projection_txt = nn.Linear(hidden_dim, contrastive_hdim)
            self.contrastive_align_projection_vid = nn.Linear(hidden_dim, contrastive_hdim)

        self.saliency_proj = nn.Linear(hidden_dim, 1)
        self.aux_loss = aux_loss

    def forward(self, src_txt, src_txt_mask, src_vid, src_vid_mask):
        """The forward expects two tensors:
               - src_txt: [batch_size, L_txt, D_txt]
               - src_txt_mask: [batch_size, L_txt], containing 0 on padded pixels,
                    will convert to 1 as padding later for transformer
               - src_vid: [batch_size, L_vid, D_vid]
               - src_vid_mask: [batch_size, L_vid], containing 0 on padded pixels,
                    will convert to 1 as padding later for transformer

            It returns a dict with the following elements:
               - "pred_spans": The normalized boxes coordinates for all queries, represented as
                               (center_x, width). These values are normalized in [0, 1],
                               relative to the size of each individual image (disregarding possible padding).
                               See PostProcess for information on how to retrieve the unnormalized bounding box.
               - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
                                dictionnaries containing the two above keys for each decoder layer.
        """
        src_vid = self.input_vid_proj(src_vid)
        src_txt = self.input_txt_proj(src_txt)
        src = torch.cat([src_vid, src_txt], dim=1)  # (bsz, L_vid+L_txt, d)
        mask = torch.cat([src_vid_mask, src_txt_mask], dim=1).bool()  # (bsz, L_vid+L_txt)
        # TODO should we remove or use different positional embeddings to the src_txt?
        pos_vid = self.position_embed(src_vid, src_vid_mask)  # (bsz, L_vid, d)
        pos_txt = self.txt_position_embed(src_txt) if self.use_txt_pos else torch.zeros_like(src_txt)  # (bsz, L_txt, d)
        # pos_txt = torch.zeros_like(src_txt)
        # pad zeros for txt positions
        pos = torch.cat([pos_vid, pos_txt], dim=1)
        # (#layers, bsz, #queries, d), (bsz, L_vid+L_txt, d)
        hs, memory = self.transformer(src, ~mask, self.query_embed.weight, pos)
        outputs_class = self.class_embed(hs)  # (#layers, batch_size, #queries, #classes)
        outputs_coord = self.span_embed(hs)  # (#layers, bsz, #queries, 2 or max_v_l * 2)
        if self.span_loss_type == "l1":
            outputs_coord = outputs_coord.sigmoid()
        out = {'pred_logits': outputs_class[-1], 'pred_spans': outputs_coord[-1]}

        txt_mem = memory[:, src_vid.shape[1]:]  # (bsz, L_txt, d)
        vid_mem = memory[:, :src_vid.shape[1]]  # (bsz, L_vid, d)
        if self.contrastive_align_loss:
            proj_queries = F.normalize(self.contrastive_align_projection_query(hs), p=2, dim=-1)
            proj_txt_mem = F.normalize(self.contrastive_align_projection_txt(txt_mem), p=2, dim=-1)
            proj_vid_mem = F.normalize(self.contrastive_align_projection_vid(vid_mem), p=2, dim=-1)
            out.update(dict(
                proj_queries=proj_queries[-1],
                proj_txt_mem=proj_txt_mem,
                proj_vid_mem=proj_vid_mem
            ))

        out["saliency_scores"] = self.saliency_proj(vid_mem).squeeze(-1)  # (bsz, L_vid)

        if self.aux_loss:
            # assert proj_queries and proj_txt_mem
            out['aux_outputs'] = [
                {'pred_logits': a, 'pred_spans': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
            if self.contrastive_align_loss:
                assert proj_queries is not None
                for idx, d in enumerate(proj_queries[:-1]):
                    out['aux_outputs'][idx].update(dict(proj_queries=d, proj_txt_mem=proj_txt_mem))
        return out

    # @torch.jit.unused
    # def _set_aux_loss(self, outputs_class, outputs_coord):
    #     # this is a workaround to make torchscript happy, as torchscript
    #     # doesn't support dictionary with non-homogeneous values, such
    #     # as a dict having both a Tensor and a list.
    #     return [{'pred_logits': a, 'pred_spans': b}
    #             for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]


class SetCriterion(nn.Module):
    """ This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """

    def __init__(self, matcher, weight_dict, eos_coef, losses, temperature, span_loss_type, max_v_l,
                 saliency_margin=1):
        """ Create the criterion.
        Parameters:
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
            temperature: float, temperature for NCE loss
            span_loss_type: str, [l1, ce]
            max_v_l: int,
            saliency_margin: float
        """
        super().__init__()
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.losses = losses
        self.temperature = temperature
        self.span_loss_type = span_loss_type
        self.max_v_l = max_v_l
        self.saliency_margin = saliency_margin

        # foreground and background classification
        self.foreground_label = 0
        self.background_label = 1
        self.eos_coef = eos_coef
        empty_weight = torch.ones(2)
        empty_weight[-1] = self.eos_coef  # lower weight for background (index 1, foreground index 0)
        self.register_buffer('empty_weight', empty_weight)

    def loss_spans(self, outputs, targets, indices):
        """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
           targets dicts must contain the key "spans" containing a tensor of dim [nb_tgt_spans, 2]
           The target spans are expected in format (center_x, w), normalized by the image size.
        """
        assert 'pred_spans' in outputs
        targets = targets["span_labels"]
        idx = self._get_src_permutation_idx(indices)
        src_spans = outputs['pred_spans'][idx]  # (#spans, max_v_l * 2)
        tgt_spans = torch.cat([t['spans'][i] for t, (_, i) in zip(targets, indices)], dim=0)  # (#spans, 2)
        if self.span_loss_type == "l1":
            loss_span = F.l1_loss(src_spans, tgt_spans, reduction='none')
            loss_giou = 1 - torch.diag(generalized_temporal_iou(span_cxw_to_xx(src_spans), span_cxw_to_xx(tgt_spans)))
        else:  # ce
            n_spans = src_spans.shape[0]
            src_spans = src_spans.view(n_spans, 2, self.max_v_l).transpose(1, 2)
            loss_span = F.cross_entropy(src_spans, tgt_spans, reduction='none')

            # giou
            # src_span_indices = src_spans.max(1)[1]  # (#spans, 2)
            # src_span_indices[:, 1] += 1  # ed non-inclusive [st, ed)
            #
            # tgt_span_indices = tgt_spans
            # tgt_span_indices[:, 1] += 1
            # loss_giou = 1 - torch.diag(generalized_temporal_iou(src_span_indices, tgt_span_indices))
            loss_giou = loss_span.new_zeros([1])

        losses = {}
        losses['loss_b'] = loss_span.mean()
        losses['loss_g'] = loss_giou.mean()
        return losses

    def loss_labels(self, outputs, targets, indices, log=True):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        # TODO add foreground and background classifier.  use all non-matched as background.
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']  # (batch_size, #queries, #classes=2)
        # idx is a tuple of two 1D tensors (batch_idx, src_idx), of the same length == #objects in batch
        idx = self._get_src_permutation_idx(indices)
        target_classes = torch.full(src_logits.shape[:2], self.background_label,
                                    dtype=torch.int64, device=src_logits.device)  # (batch_size, #queries)
        target_classes[idx] = self.foreground_label

        loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight, reduction="none")
        losses = {'loss_f': loss_ce.mean()}

        if log:
            # TODO this should probably be a separate loss, not hacked in this one here
            losses['class_error'] = 100 - accuracy(src_logits[idx], self.foreground_label)[0]
        return losses

    def loss_saliency(self, outputs, targets, indices, log=True):
        """higher scores for positive clips"""
        if "saliency_pos_labels" not in targets:
            return {"loss_s_intra": 0}
        saliency_scores = outputs["saliency_scores"]  # (N, L)
        pos_indices = targets["saliency_pos_labels"]  # (N, #pairs)
        neg_indices = targets["saliency_neg_labels"]  # (N, #pairs)
        num_pairs = pos_indices.shape[1]  # typically 2 or 4
        batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
        pos_scores = torch.stack(
            [saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
        neg_scores = torch.stack(
            [saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
        loss_saliency = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
            / (len(pos_scores) * num_pairs) * 2  # * 2 to keep the loss the same scale
        return {"loss_s_intra": loss_saliency}

    def loss_contrastive_align(self, outputs, targets, indices, log=True):
        """encourage higher scores between matched query span and input text"""
        normalized_text_embed = outputs["proj_txt_mem"]  # (bsz, #tokens, d)  text tokens
        normalized_img_embed = outputs["proj_queries"]  # (bsz, #queries, d)
        logits = torch.einsum(
            "bmd,bnd->bmn", normalized_img_embed, normalized_text_embed)  # (bsz, #queries, #tokens)
        logits = logits.sum(2) / self.temperature  # (bsz, #queries)
        idx = self._get_src_permutation_idx(indices)
        positive_map = torch.zeros_like(logits, dtype=torch.bool)
        positive_map[idx] = True
        positive_logits = logits.masked_fill(~positive_map, 0)

        pos_term = positive_logits.sum(1)  # (bsz, )
        num_pos = positive_map.sum(1)  # (bsz, )
        neg_term = logits.logsumexp(1)  # (bsz, )
        loss_nce = - pos_term / num_pos + neg_term  # (bsz, )
        losses = {"loss_contrastive_align": loss_nce.mean()}
        return losses

    def loss_contrastive_align_vid_txt(self, outputs, targets, indices, log=True):
        """encourage higher scores between matched query span and input text"""
        # TODO (1)  align vid_mem and txt_mem;
        # TODO (2) change L1 loss as CE loss on 75 labels, similar to soft token prediction in MDETR
        normalized_text_embed = outputs["proj_txt_mem"]  # (bsz, #tokens, d)  text tokens
        normalized_img_embed = outputs["proj_queries"]  # (bsz, #queries, d)
        logits = torch.einsum(
            "bmd,bnd->bmn", normalized_img_embed, normalized_text_embed)  # (bsz, #queries, #tokens)
        logits = logits.sum(2) / self.temperature  # (bsz, #queries)
        idx = self._get_src_permutation_idx(indices)
        positive_map = torch.zeros_like(logits, dtype=torch.bool)
        positive_map[idx] = True
        positive_logits = logits.masked_fill(~positive_map, 0)

        pos_term = positive_logits.sum(1)  # (bsz, )
        num_pos = positive_map.sum(1)  # (bsz, )
        neg_term = logits.logsumexp(1)  # (bsz, )
        loss_nce = - pos_term / num_pos + neg_term  # (bsz, )
        losses = {"loss_contrastive_align": loss_nce.mean()}
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx  # two 1D tensors of the same length

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, **kwargs):
        loss_map = {
            "spans": self.loss_spans,
            "labels": self.loss_labels,
            "contrastive_align": self.loss_contrastive_align,
            "saliency": self.loss_saliency,
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, **kwargs)

    def forward(self, outputs, targets):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}

        # Retrieve the matching between the outputs of the last layer and the targets
        # list(tuples), each tuple is (pred_span_indices, tgt_span_indices)
        indices = self.matcher(outputs_without_aux, targets)

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    if "saliency" == loss:  # skip as it is only in the top layer
                        continue
                    kwargs = {}
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, **kwargs)
                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses


class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


class LinearLayer(nn.Module):
    """linear layer configurable with layer normalization, dropout, ReLU."""

    def __init__(self, in_hsz, out_hsz, layer_norm=True, dropout=0.1, relu=True):
        super(LinearLayer, self).__init__()
        self.relu = relu
        self.layer_norm = layer_norm
        if layer_norm:
            self.LayerNorm = nn.LayerNorm(in_hsz)
        layers = [
            nn.Dropout(dropout),
            nn.Linear(in_hsz, out_hsz)
        ]
        self.net = nn.Sequential(*layers)

    def forward(self, x):
        """(N, L, D)"""
        if self.layer_norm:
            x = self.LayerNorm(x)
        x = self.net(x)
        if self.relu:
            x = F.relu(x, inplace=True)
        return x  # (N, L, D)


def build_model(args):
    # the `num_classes` naming here is somewhat misleading.
    # it indeed corresponds to `max_obj_id + 1`, where max_obj_id
    # is the maximum id for a class in your dataset. For example,
    # COCO has a max_obj_id of 90, so we pass `num_classes` to be 91.
    # As another example, for a dataset that has a single class with id 1,
    # you should pass `num_classes` to be 2 (max_obj_id + 1).
    # For more details on this, check the following discussion
    # https://github.com/facebookresearch/moment_bert/issues/108#issuecomment-650269223
    device = torch.device(args.device)

    transformer = build_transformer(args)
    position_embedding, txt_position_embedding = build_position_encoding(args)

    model = Model(
        transformer,
        position_embedding,
        txt_position_embedding,
        txt_dim=args.t_feat_dim,
        vid_dim=args.v_feat_dim,
        num_queries=args.num_queries,
        input_dropout=args.input_dropout,
        aux_loss=args.aux_loss,
        # contrastive_align_loss=args.contrastive_align_loss,
        # contrastive_hdim=args.contrastive_hdim,
        span_loss_type=args.span_loss_type,
        use_txt_pos=args.use_txt_pos,
        n_input_proj=args.n_input_proj,
    )

    matcher = build_matcher(args)
    weight_dict = {"loss_b": args.b_loss_coef,
                   "loss_g": args.g_loss_coef,
                   "loss_f": args.f_loss_coef,
                   "loss_s_intra": args.s_loss_intra_coef,
                   "loss_s_inter": args.s_loss_inter_coef}
    # if args.contrastive_align_loss:
        # weight_dict["loss_contrastive_align"] = args.contrastive_align_loss_coef
    # TODO this is a hack
    if args.aux_loss:
        aux_weight_dict = {}
        for i in range(args.dec_layers - 1):
            aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items() if k != "loss_saliency"})
        weight_dict.update(aux_weight_dict)

    losses = ['spans', 'labels', 'saliency']
    # if args.contrastive_align_loss:
        # losses += ["contrastive_align"]
    criterion = SetCriterion(
        matcher=matcher, weight_dict=weight_dict, losses=losses,
        eos_coef=args.eos_coef, temperature=args.temperature,
        span_loss_type=args.span_loss_type, max_v_l=args.max_v_l,
        saliency_margin=args.saliency_margin
    )
    criterion.to(device)
    return model, criterion