Spaces:
Runtime error
Runtime error
Commit
·
4564a8c
1
Parent(s):
c56e83f
initial commit.
Browse files
README.md
CHANGED
@@ -5,46 +5,89 @@ datasets:
|
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
-
|
|
|
|
|
9 |
sdk: gradio
|
10 |
sdk_version: 3.0.2
|
11 |
app_file: app.py
|
12 |
pinned: false
|
13 |
---
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
|
18 |
|
19 |
## Metric Description
|
20 |
-
|
|
|
|
|
21 |
|
22 |
## How to Use
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
### Inputs
|
28 |
-
|
29 |
-
- **
|
30 |
|
31 |
### Output Values
|
32 |
-
|
33 |
-
*Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*
|
34 |
-
|
35 |
-
*State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*
|
36 |
-
|
37 |
-
#### Values from Popular Papers
|
38 |
-
*Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
39 |
|
40 |
### Examples
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
+
- accuracy
|
9 |
+
|
10 |
+
description: "computes the accuracy at k for a set of predictions as labels"
|
11 |
sdk: gradio
|
12 |
sdk_version: 3.0.2
|
13 |
app_file: app.py
|
14 |
pinned: false
|
15 |
---
|
16 |
|
17 |
+
# accuracyk
|
|
|
|
|
18 |
|
19 |
## Metric Description
|
20 |
+
Computes the accuracy at k for a set of predictions. The accuracy at k is the number of instances where the real label is in the set of the k most probable
|
21 |
+
classes.
|
22 |
+
The parameter k is inferred from the shape of the array passed. If you want the accuracy at 5 the shape needs to be (N, 5) where N is the number of examples.
|
23 |
|
24 |
## How to Use
|
25 |
+
```
|
26 |
+
predictions = np.array([
|
27 |
+
[0, 7, 1, 3, 5],
|
28 |
+
[0, 2, 9, 8, 4],
|
29 |
+
[8, 4, 0, 1, 3],
|
30 |
+
])
|
31 |
+
references = np.array([
|
32 |
+
3,
|
33 |
+
5,
|
34 |
+
0
|
35 |
+
])
|
36 |
+
results = accuracyk.compute(predictions=predictions, references=references)
|
37 |
+
# 2/3 of the labels are in the corresponding rows
|
38 |
+
# the shape of the array predictions is (3, 5) so accuracy at 5 has been computed
|
39 |
+
# { accuracy: 0.6 }
|
40 |
+
```
|
41 |
|
42 |
### Inputs
|
43 |
+
- **predictions**: An array of shape (N, K) where N is the number of examples and K is the desired k (5 for accuracy at 5)
|
44 |
+
- **references**: An array of the true labels for the examples
|
45 |
|
46 |
### Output Values
|
47 |
+
The metric returns outputs between 0 and 1. With 0 being that no value is in its corresponding row and 1 being that every value occurs in its row (higher is better).
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
### Examples
|
50 |
+
```python
|
51 |
+
>>> accuracyk = evaluate.load("KevinSpaghetti/accuracyk")
|
52 |
+
>>> # with numpy arrays
|
53 |
+
>>> predictions = np.array([
|
54 |
+
>>> [0, 7, 1, 3, 5],
|
55 |
+
>>> [0, 2, 9, 8, 4],
|
56 |
+
>>> [8, 4, 0, 1, 3],
|
57 |
+
>>> ])
|
58 |
+
>>> references = np.array([
|
59 |
+
>>> 3,
|
60 |
+
>>> 4,
|
61 |
+
>>> 0
|
62 |
+
>>> ])
|
63 |
+
>>> results = accuracyk.compute(predictions=predictions, references=references)
|
64 |
+
{ accuracy: 1 } # every label is in its row
|
65 |
|
66 |
+
>>> # With lists
|
67 |
+
>>> predictions = [
|
68 |
+
>>> [0, 7, 1, 3, 5],
|
69 |
+
>>> [0, 2, 9, 8, 4],
|
70 |
+
>>> [8, 4, 0, 1, 3],
|
71 |
+
>>> ]
|
72 |
+
>>> references = [
|
73 |
+
>>> 3,
|
74 |
+
>>> 5,
|
75 |
+
>>> 0
|
76 |
+
>>> ]
|
77 |
+
>>> results = accuracyk.compute(predictions=predictions, references=references)
|
78 |
+
{ accuracy: 0.6 }
|
79 |
+
>>> # 3 is in the first row,
|
80 |
+
>>> # 5 is not in the second row,
|
81 |
+
>>> # 0 is in the third row
|
82 |
+
|
83 |
+
>>> # with numpy for a batch of examples
|
84 |
+
>>> k=5
|
85 |
+
>>> # get the 5 highest probabilities
|
86 |
+
>>> top5_probs = np.argpartition(logits, -k, axis=-1)[:, -k:]
|
87 |
+
>>> results = accuracyk.compute(references=top5_probs, predictions=labels)
|
88 |
|
89 |
+
>>> # computing the accuracy at 1
|
90 |
+
>>> predictions = np.array([ 3, 8, 1 ])
|
91 |
+
>>> references = np.array([ 3, 4, 0 ])
|
92 |
+
>>> results = accuracyk.compute(predictions=np.expand_dims(predictions, axis=1), references=references)
|
93 |
+
```
|
accuracyk.py
CHANGED
@@ -1,68 +1,81 @@
|
|
1 |
-
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""TODO: Add a description here."""
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
18 |
|
|
|
19 |
|
20 |
-
# TODO: Add BibTeX citation
|
21 |
-
_CITATION = """\
|
22 |
-
@InProceedings{huggingface:module,
|
23 |
-
title = {A great new module},
|
24 |
-
authors={huggingface, Inc.},
|
25 |
-
year={2020}
|
26 |
-
}
|
27 |
-
"""
|
28 |
-
|
29 |
-
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
"""
|
33 |
|
34 |
-
|
35 |
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
Calculates how good are predictions given some references, using certain scores
|
38 |
Args:
|
39 |
-
predictions:
|
40 |
-
|
41 |
-
references:
|
42 |
-
reference should be a string with tokens separated by spaces.
|
43 |
Returns:
|
44 |
-
accuracy:
|
45 |
-
another_score: description of the second score,
|
46 |
Examples:
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
>>>
|
51 |
-
>>>
|
52 |
-
>>>
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
|
|
|
58 |
|
|
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class accuracyk(evaluate.Metric):
|
62 |
-
"""
|
63 |
|
64 |
def _info(self):
|
65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
return evaluate.MetricInfo(
|
67 |
# This is the description that will appear on the modules page.
|
68 |
module_type="metric",
|
@@ -71,25 +84,24 @@ class accuracyk(evaluate.Metric):
|
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
features=datasets.Features({
|
74 |
-
'predictions': datasets.Value(
|
75 |
'references': datasets.Value('int64'),
|
76 |
}),
|
77 |
-
|
78 |
-
|
79 |
-
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
def _download_and_prepare(self, dl_manager):
|
85 |
-
|
86 |
-
# TODO: Download external resources if needed
|
87 |
-
pass
|
88 |
|
89 |
def _compute(self, predictions, references):
|
90 |
-
"""Returns the
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Computes the accuracy at k for a set of labels"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import evaluate
|
4 |
import datasets
|
5 |
+
import typing
|
6 |
|
7 |
+
_CITATION = ""
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
_DESCRIPTION = """\
|
10 |
+
Computes the accuracy at k for a set of predictions. The accuracy at k is the \
|
11 |
+
number of instances where the real label is in the set of the k most probable
|
12 |
+
classes.
|
13 |
+
The parameter k is inferred from the shape of the array passed. If you want the accuracy \
|
14 |
+
at 5 the shape needs to be (N, 5) where N is the number of examples.
|
15 |
"""
|
16 |
|
|
|
17 |
# TODO: Add description of the arguments of the module here
|
18 |
_KWARGS_DESCRIPTION = """
|
|
|
19 |
Args:
|
20 |
+
predictions: An array of shape (N, K) where N is the number of examples
|
21 |
+
and K is the desired k (5 for accuracy at 5)
|
22 |
+
references: An array of the true labels for the examples
|
|
|
23 |
Returns:
|
24 |
+
accuracy: the accuracy at k for the inputs
|
|
|
25 |
Examples:
|
26 |
+
|
27 |
+
>>> accuracyk = evaluate.load("KevinSpaghetti/accuracyk")
|
28 |
|
29 |
+
>>> #with numpy arrays
|
30 |
+
>>> predictions = np.array([
|
31 |
+
>>> [0, 7, 1, 3, 5],
|
32 |
+
>>> [0, 2, 9, 8, 4],
|
33 |
+
>>> [8, 4, 0, 1, 3],
|
34 |
+
>>> ])
|
35 |
+
>>> references = np.array([
|
36 |
+
>>> 3,
|
37 |
+
>>> 4,
|
38 |
+
>>> 0
|
39 |
+
>>> ])
|
40 |
+
>>> results = accuracyk.compute(predictions=predictions, references=references)
|
41 |
+
>>> #\{ accuracy: 1 \} # every label is in its row
|
42 |
+
|
43 |
+
>>> #With lists
|
44 |
+
>>> predictions = [
|
45 |
+
>>> [0, 7, 1, 3, 5],
|
46 |
+
>>> [0, 2, 9, 8, 4],
|
47 |
+
>>> [8, 4, 0, 1, 3],
|
48 |
+
>>> ]
|
49 |
+
>>> references = [
|
50 |
+
>>> 3,
|
51 |
+
>>> 5,
|
52 |
+
>>> 0
|
53 |
+
>>> ]
|
54 |
+
>>> results = accuracyk.compute(predictions=predictions, references=references)
|
55 |
+
>>> #\{ accuracy: 0.6 \}
|
56 |
+
>>> # 3 is in the first row,
|
57 |
+
>>> # 5 is not in the second row,
|
58 |
+
>>> # 0 is in the third row
|
59 |
+
|
60 |
+
>>> #with numpy for a batch of examples
|
61 |
+
>>> k=5
|
62 |
+
>>> # get the 5 highest probabilities
|
63 |
+
>>> top5_probs = np.argpartition(logits, -k, axis=-1)[:, -k:]
|
64 |
+
>>> results = accuracyk.compute(references=top5_probs, predictions=labels)
|
65 |
|
66 |
+
>>> # computing the accuracy at 1
|
67 |
+
>>> predictions = np.array([ 3, 8, 1 ])
|
68 |
+
>>> references = np.array([ 3, 4, 0 ])
|
69 |
+
>>> results = accuracyk.compute(predictions=np.expand_dims(predictions, axis=1), references=references)
|
70 |
+
>>> print(results)
|
71 |
|
72 |
+
"""
|
73 |
|
74 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
75 |
class accuracyk(evaluate.Metric):
|
76 |
+
"""Computes the accuracy at k for an array of shape (N, k) and correct labels"""
|
77 |
|
78 |
def _info(self):
|
|
|
79 |
return evaluate.MetricInfo(
|
80 |
# This is the description that will appear on the modules page.
|
81 |
module_type="metric",
|
|
|
84 |
inputs_description=_KWARGS_DESCRIPTION,
|
85 |
# This defines the format of each prediction and reference
|
86 |
features=datasets.Features({
|
87 |
+
'predictions': datasets.Sequence(datasets.Value("int64")),
|
88 |
'references': datasets.Value('int64'),
|
89 |
}),
|
90 |
+
codebase_urls=[],
|
91 |
+
reference_urls=[]
|
|
|
|
|
|
|
92 |
)
|
93 |
|
94 |
def _download_and_prepare(self, dl_manager):
|
95 |
+
...
|
|
|
|
|
96 |
|
97 |
def _compute(self, predictions, references):
|
98 |
+
"""Returns the accuracy at k"""
|
99 |
+
if isinstance(predictions, list):
|
100 |
+
accuracyk = sum(
|
101 |
+
[reference in kpredictions for kpredictions, reference in zip(predictions, references)]
|
102 |
+
) / len(references)
|
103 |
+
else:
|
104 |
+
accuracyk = (
|
105 |
+
references[:, None] == predictions[:, :]
|
106 |
+
).any(axis=1).sum() / len(references)
|
107 |
+
return dict(accuracy=accuracyk)
|
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import evaluate
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
4 |
-
|
5 |
module = evaluate.load("KevinSpaghetti/accuracyk")
|
6 |
launch_gradio_widget(module)
|
|
|
1 |
import evaluate
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
|
|
4 |
module = evaluate.load("KevinSpaghetti/accuracyk")
|
5 |
launch_gradio_widget(module)
|
tests.py
CHANGED
@@ -1,17 +1,33 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
accuracyk = evaluate.load("./accuracyk.py", use_auth_token=True)
|
5 |
+
|
6 |
+
predictions = np.array([
|
7 |
+
[0, 7, 1, 3, 5],
|
8 |
+
[0, 2, 9, 8, 4],
|
9 |
+
[8, 4, 0, 1, 3],
|
10 |
+
])
|
11 |
+
|
12 |
+
references = np.array([
|
13 |
+
3,
|
14 |
+
4,
|
15 |
+
0
|
16 |
+
])
|
17 |
+
results = accuracyk.compute(predictions=predictions, references=references)
|
18 |
+
print(results)
|
19 |
+
|
20 |
+
predictions = [
|
21 |
+
[0, 7, 1, 3, 5],
|
22 |
+
[0, 2, 9, 8, 4],
|
23 |
+
[8, 4, 0, 1, 3],
|
24 |
+
]
|
25 |
+
references = [3, 5, 0]
|
26 |
+
results = accuracyk.compute(predictions=predictions, references=references)
|
27 |
+
|
28 |
+
predictions = np.array([ 3, 8, 1 ])
|
29 |
+
references = np.array([ 3, 4, 0 ])
|
30 |
+
|
31 |
+
results = accuracyk.compute(predictions=np.expand_dims(predictions, axis=1), references=references)
|
32 |
+
print(results)
|
33 |
+
|