Spaces:
Sleeping
Sleeping
# Import the libraries | |
import os | |
import uuid | |
import joblib | |
import json | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import CommitScheduler | |
from pathlib import Path | |
# Run the training script placed in the same directory as app.py | |
# The training script will train and persist a linear regression | |
# model with the filename 'model.joblib' | |
import subprocess | |
try: | |
result = subprocess.run(['python', 'train.py'], check=True, capture_output=True, text=True) | |
print(f"Training done.{result.stdout}") | |
except subprocess.CalledProcessError as e: | |
print(f"Error occurred:{e.stderr}") | |
exit(1) | |
# Load the freshly trained model from disk | |
insurance_charge_predictor = joblib.load('model.joblib') | |
# Prepare the logging functionality | |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" | |
log_folder = log_file.parent | |
log_folder.mkdir(parents=True, exist_ok=True) # mkdir! | |
scheduler = CommitScheduler( | |
repo_id="Keytaro/insurance-charge-mlops-logs", # provide a name "insurance-charge-mlops-logs" for the repo_id | |
repo_type="dataset", | |
folder_path=log_folder, | |
path_in_repo="data", | |
every=2, | |
) | |
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model | |
# the functions runs when 'Submit' is clicked or when a API request is made | |
def predict_insurance_charge(age, bmi, children, sex, smoker, region): | |
# Create a DataFrame from the input values | |
input_data = pd.DataFrame( | |
[[age, bmi, children, sex, smoker, region]], | |
columns=['age', 'bmi', 'children', 'sex', 'smoker', 'region'] | |
) | |
# Make a prediction using the loaded model | |
prediction = insurance_charge_predictor.predict(input_data) | |
# While the prediction is made, log both the inputs and outputs to a log file | |
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel | |
# access | |
with scheduler.lock: | |
with log_file.open("a") as f: | |
f.write(json.dumps( | |
{ | |
'age': age, | |
'bmi': bmi, | |
'children': children, | |
'sex': sex, | |
'smoker': smoker, | |
'region': region, | |
'prediction': prediction[0] | |
} | |
)) | |
f.write("\n") | |
return prediction[0] | |
# Set up UI components for input and output | |
inputs = [ | |
gr.Number(label="Age (Number)"), | |
gr.Number(label="BMI (Number)"), | |
gr.Number(label="The number of children (Number)"), | |
gr.Dropdown(label="Sex", choices=["male", "female"]), | |
gr.Dropdown(label="Smoker", choices=["yes", "no"]), | |
gr.Dropdown(label="Region", choices=["northeast", "northwest", "southeast", "southwest"]) | |
] | |
output = gr.Number(label="Predicted Insurance Charge") | |
# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction" | |
demo = gr.Interface( | |
fn=predict_insurance_charge, | |
inputs=inputs, | |
outputs=output, | |
title="HealthyLife Insurance Charge Predictor", | |
description="This API allows you to predict the insurance charges based on personal health data.", | |
allow_flagging="auto", # | |
concurrency_limit=8 # | |
) | |
# Launch with a load balancer | |
demo.queue() | |
demo.launch(share=False) | |