Spaces:
Sleeping
Sleeping
import joblib | |
import pandas as pd | |
from sklearn.impute import SimpleImputer | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.compose import make_column_transformer | |
from sklearn.pipeline import make_pipeline, Pipeline | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import mean_squared_error, r2_score | |
data_df = pd.read_csv("insurance.csv") | |
#dataset = fetch_openml(name='insurance') | |
#data_df = dataset.data | |
target = 'charges' | |
numeric_features = ['age', 'bmi', 'children'] | |
categorical_features = ['sex', 'smoker', 'region'] | |
print("Creating data subsets") | |
X = data_df[numeric_features + categorical_features] | |
y = data_df[target] | |
Xtrain, Xtest, ytrain, ytest = train_test_split( | |
X, y, | |
test_size=0.2, | |
random_state=42 | |
) | |
numerical_pipeline = Pipeline([ | |
('imputer', SimpleImputer(strategy='median')), # No missing! | |
('scaler', StandardScaler()) | |
]) | |
categorical_pipeline = Pipeline([ | |
('imputer', SimpleImputer(strategy='most_frequent')), | |
('onehot', OneHotEncoder(handle_unknown='ignore')) | |
]) | |
preprocessor = make_column_transformer( | |
(numerical_pipeline, numeric_features), | |
(categorical_pipeline, categorical_features) | |
) | |
model_logistic_regression = LinearRegression(n_jobs=-1) | |
print("Estimating Model Pipeline") | |
model_pipeline = make_pipeline( | |
preprocessor, # Applying preprocessing steps | |
model_logistic_regression # Training logistic regression model | |
) | |
model_pipeline.fit(Xtrain, ytrain) | |
print("Logging Metrics") | |
print(f"R-squared: {r2_score(ytest, model_pipeline.predict(Xtest))}") | |
print("Serializing Model") | |
saved_model_path = "model.joblib" | |
joblib.dump(model_pipeline, saved_model_path) | |