# Import the libraries import os import uuid import joblib import json import gradio as gr import pandas as pd from huggingface_hub import CommitScheduler from pathlib import Path # Run the training script placed in the same directory as app.py # The training script will train and persist a linear regression # model with the filename 'model.joblib' import subprocess try: result = subprocess.run(['python', 'train.py'], check=True, capture_output=True, text=True) print(f"Training done.{result.stdout}") except subprocess.CalledProcessError as e: print(f"Error occurred:{e.stderr}") exit(1) # Load the freshly trained model from disk insurance_charge_predictor = joblib.load('model.joblib') # Prepare the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent log_folder.mkdir(parents=True, exist_ok=True) # mkdir! scheduler = CommitScheduler( repo_id="Keytaro/insurance-charge-mlops-logs", # provide a name "insurance-charge-mlops-logs" for the repo_id repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2, ) # Define the predict function which will take features, convert to dataframe and make predictions using the saved model # the functions runs when 'Submit' is clicked or when a API request is made def predict_insurance_charge(age, bmi, children, sex, smoker, region): # Create a DataFrame from the input values input_data = pd.DataFrame( [[age, bmi, children, sex, smoker, region]], columns=['age', 'bmi', 'children', 'sex', 'smoker', 'region'] ) # Make a prediction using the loaded model prediction = insurance_charge_predictor.predict(input_data) # While the prediction is made, log both the inputs and outputs to a log file # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel # access with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region, 'prediction': prediction[0] } )) f.write("\n") return prediction[0] # Set up UI components for input and output inputs = [ gr.Number(label="Age (Number)"), gr.Number(label="BMI (Number)"), gr.Number(label="The number of children (Number)"), gr.Dropdown(label="Sex", choices=["male", "female"]), gr.Dropdown(label="Smoker", choices=["yes", "no"]), gr.Dropdown(label="Region", choices=["northeast", "northwest", "southeast", "southwest"]) ] output = gr.Number(label="Predicted Insurance Charge") # Create the gradio interface, make title "HealthyLife Insurance Charge Prediction" demo = gr.Interface( fn=predict_insurance_charge, inputs=inputs, outputs=output, title="HealthyLife Insurance Charge Predictor", description="This API allows you to predict the insurance charges based on personal health data.", allow_flagging="auto", # concurrency_limit=8 # ) # Launch with a load balancer demo.queue() demo.launch(share=False)