Spaces:
Sleeping
Sleeping
File size: 12,310 Bytes
6253266 94826ad 6253266 94826ad 6253266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# import os
# from PyPDF2 import PdfReader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_google_genai import GoogleGenerativeAIEmbeddings
# import streamlit as st
# import google.generativeai as genai
# from langchain.vectorstores import FAISS
# from langchain.prompts import PromptTemplate
# from dotenv import load_dotenv
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from docx import Document # Thêm import để đọc file docx
# load_dotenv()
# genai.configure(api_key="AIzaSyC5hcS1goQ7emeXmyk_7eEQIie7J8OomC4") # Thay YOUR_API_KEY bằng API key của bạn
# model = genai.GenerativeModel('gemini-1.5-flash')
# # Đọc tất cả PDF và trả về văn bản
# def get_pdf_text(pdf_docs):
# text = ""
# for pdf in pdf_docs:
# pdf_reader = PdfReader(pdf)
# for page in pdf_reader.pages:
# text += page.extract_text() or ""
# return text
# # Đọc tất cả DOCX và trả về văn bản
# def get_docx_text(docx_docs):
# text = ""
# for doc in docx_docs:
# document = Document(doc)
# for paragraph in document.paragraphs:
# text += paragraph.text # Đảm bảo chuỗi này được đóng đúng cách
# return text
# # Tách văn bản thành các đoạn
# def get_text_chunks(text):
# splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
# chunks = splitter.split_text(text)
# return chunks
# # Tạo vector store từ các đoạn văn bản
# def get_vector_store(chunks):
# embeddings = SentenceTransformerEmbeddings(model_name="keepitreal/vietnamese-sbert", model_kwargs={"trust_remote_code": True})
# vector_store = FAISS.from_texts(chunks, embedding=embeddings)
# vector_store.save_local("faiss_index")
# # Tạo chuỗi hỏi đáp
# def create_qa_chain(prompt, db):
# def custom_llm(query, context):
# full_prompt = prompt.format(context=context, question=query)
# response = model.generate_content(full_prompt)
# if "câu trả lời không có trong ngữ cảnh" in response.text:
# response = model.generate_content(query)
# return response.text
# class CustomRetrievalQA:
# def __init__(self, retriever, prompt):
# self.retriever = retriever
# self.prompt = prompt
# def invoke(self, inputs):
# query = inputs["query"]
# docs = self.retriever.get_relevant_documents(query)
# context = " ".join([doc.page_content for doc in docs])
# answer = custom_llm(query, context)
# return {"answer": answer}
# retriever = db.as_retriever(search_kwargs={"k": 3}, max_tokens_limit=6000)
# return CustomRetrievalQA(retriever, prompt)
# def clear_chat_history():
# st.session_state.messages = [{"role": "assistant", "content": "Upload some PDFs or DOCs and ask me a question."}]
# def user_input(user_question):
# embeddings = SentenceTransformerEmbeddings(model_name="keepitreal/vietnamese-sbert", model_kwargs={"trust_remote_code": True})
# new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
# retriever = new_db.as_retriever()
# prompt_template = """
# Trả lời câu hỏi chi tiết nhất có thể từ ngữ cảnh được cung cấp. Nếu câu trả lời không nằm trong ngữ cảnh được cung cấp, hãy nói, "câu trả lời không có trong ngữ cảnh".
# Context:\n {context}\n
# Question: \n{question}\n
# Trả lời:
# """
# qa_chain = create_qa_chain(prompt_template, new_db)
# response = qa_chain.invoke({"query": user_question})
# return {"output_text": [response["answer"]]}
# def main():
# st.set_page_config(page_title="Gemini PDF & DOC Chatbot", page_icon="🤖")
# # Sidebar for uploading PDF and DOCX files
# with st.sidebar:
# st.title("Menu:")
# pdf_docs = st.file_uploader("Upload your PDF Files", type=["pdf"], accept_multiple_files=True)
# docx_docs = st.file_uploader("Upload your DOCX Files", type=["docx"], accept_multiple_files=True)
# if st.button("Submit & Process"):
# with st.spinner("Processing..."):
# raw_text = get_pdf_text(pdf_docs)
# raw_text += get_docx_text(docx_docs) # Kết hợp văn bản từ PDF và DOCX
# if raw_text:
# text_chunks = get_text_chunks(raw_text)
# get_vector_store(text_chunks)
# st.success("Done")
# else:
# st.error("No text extracted from the PDFs or DOCX files.")
# # Main content area for displaying chat messages
# st.title("Chat with PDF and DOCX files using Gemini🤖")
# st.write("Welcome to the chat!")
# st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# # Chat input
# if "messages" not in st.session_state.keys():
# st.session_state.messages = [{"role": "assistant", "content": "Upload some PDFs or DOCs and ask me a question."}]
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# if prompt := st.chat_input():
# st.session_state.messages.append({"role": "user", "content": prompt})
# with st.chat_message("user"):
# st.write(prompt)
# # Display chat messages and bot response
# if st.session_state.messages and st.session_state.messages[-1]["role"] != "assistant":
# with st.chat_message("assistant"):
# with st.spinner("Thinking..."):
# response = user_input(prompt)
# placeholder = st.empty()
# full_response = ''
# for item in response['output_text']:
# full_response += item
# placeholder.markdown(full_response)
# placeholder.markdown(full_response)
# if full_response:
# message = {"role": "assistant", "content": full_response}
# st.session_state.messages.append(message)
# if __name__ == "__main__":
# main()
import os
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import streamlit as st
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
from langchain_community.embeddings import SentenceTransformerEmbeddings
from docx import Document # Thêm import để đọc file docx
load_dotenv()
genai.configure(api_key="AIzaSyC5hcS1goQ7emeXmyk_7eEQIie7J8OomC4") # Thay YOUR_API_KEY bằng API key của bạn
model = genai.GenerativeModel('gemini-1.5-flash')
# Đọc tất cả PDF và trả về văn bản
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text() or ""
return text
# Đọc tất cả DOCX và trả về văn bản
def get_docx_text(docx_docs):
text = ""
for doc in docx_docs:
document = Document(doc)
for paragraph in document.paragraphs:
text += paragraph.text
return text
# Tách văn bản thành các đoạn
def get_text_chunks(text):
splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = splitter.split_text(text)
return chunks
# Tạo vector store từ các đoạn văn bản
def get_vector_store(chunks):
embeddings = SentenceTransformerEmbeddings(model_name="keepitreal/vietnamese-sbert", model_kwargs={"trust_remote_code": True})
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
# Tạo chuỗi hỏi đáp
def create_qa_chain(prompt, db):
def custom_llm(query, context):
full_prompt = prompt.format(context=context, question=query)
response = model.generate_content(full_prompt)
if "Câu trả lời không có trong ngữ cảnh" in response.text:
response = model.generate_content(query)
return response.text
class CustomRetrievalQA:
def __init__(self, retriever, prompt):
self.retriever = retriever
self.prompt = prompt
def invoke(self, inputs):
query = inputs["query"]
docs = self.retriever.get_relevant_documents(query)
context = " ".join([doc.page_content for doc in docs])
answer = custom_llm(query, context)
return {"answer": answer}
retriever = db.as_retriever(search_kwargs={"k": 3}, max_tokens_limit=6000)
return CustomRetrievalQA(retriever, prompt)
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "Upload some PDFs or DOCs and ask me a question."}]
def user_input(user_question):
embeddings = SentenceTransformerEmbeddings(model_name="keepitreal/vietnamese-sbert", model_kwargs={"trust_remote_code": True})
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
retriever = new_db.as_retriever()
prompt_template = """
Trả lời câu hỏi chi tiết nhất có thể từ ngữ cảnh được cung cấp. Nếu câu trả lời không nằm trong ngữ cảnh được cung cấp, hãy nói, "Câu trả lời không có trong ngữ cảnh".
Context:\n {context}\n
Question: \n{question}\n
Trả lời:
"""
qa_chain = create_qa_chain(prompt_template, new_db)
response = qa_chain.invoke({"query": user_question})
return {"output_text": [response["answer"]]}
def main():
st.set_page_config(page_title="Gemini PDF & DOC Chatbot", page_icon="🤖")
# Sidebar for uploading PDF and DOCX files
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files", type=["pdf"], accept_multiple_files=True)
docx_docs = st.file_uploader("Upload your DOCX Files", type=["docx"], accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
raw_text += get_docx_text(docx_docs) # Kết hợp văn bản từ PDF và DOCX
if raw_text:
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success(f"Processed {len(pdf_docs)} PDFs and {len(docx_docs)} DOCs.")
else:
st.error("No text extracted from the PDFs or DOCX files.")
# Main content area for displaying chat messages
st.title("Chat with PDF and DOCX files using Gemini🤖")
st.write("Welcome to the chat!")
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# Chat input
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "Upload some PDFs or DOCs and ask me a question."}]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Display chat messages and bot response
if st.session_state.messages and st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = user_input(prompt)
placeholder = st.empty()
full_response = ''
for item in response['output_text']:
full_response += item
placeholder.markdown(full_response)
placeholder.markdown(full_response)
if full_response:
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message)
if __name__ == "__main__":
main()
|