Naptah / app.py
Khaled27's picture
Update app.py
d142a3f
raw
history blame
1.09 kB
from flask import Flask, request
from transformers import AutoModelForImageClassification
from transformers import AutoImageProcessor
from PIL import Image
from io import BytesIO
import os
import torch
app = Flask(__name__)
model = AutoModelForImageClassification.from_pretrained(
'./my_model')
image_processor = AutoImageProcessor.from_pretrained(
"microsoft/resnet-50")
@app.route('/upload_image', methods=['POST'])
def upload_image():
# Get the image file from the request
image_file = request.files['image'].stream
# image = Image.open(BytesIO(image_file.read()))
image = Image.open(image_file)
inputs = image_processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(-1).item()
disease = model.config.id2label[predicted_label]
# You can perform additional operations with the image here
# ...
return disease
@app.route('/', methods=['GET'])
def hi():
return "NAPTAH Mobile Application"
app.run(host='0.0.0.0', port=7860)