Khaled27 commited on
Commit
2fc056d
·
1 Parent(s): 28df8de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -31
app.py CHANGED
@@ -1,46 +1,46 @@
1
- from flask import Flask, request
2
- from transformers import AutoModelForImageClassification
3
- from transformers import AutoImageProcessor
4
- from PIL import Image
5
- import torch
6
 
7
- app = Flask(__name__)
8
 
9
- model = AutoModelForImageClassification.from_pretrained(
10
- './myModel')
11
- image_processor = AutoImageProcessor.from_pretrained(
12
- "google/vit-base-patch16-224-in21k")
13
 
14
 
15
- @app.route('/upload_image', methods=['POST'])
16
- def upload_image():
17
- # Get the image file from the request
18
- image_file = request.files['image']
19
 
20
- # Save the image file to a desired location on the server
21
- image_path = "assets/img.jpg"
22
- image_file.save(image_path)
23
 
24
- # You can perform additional operations with the image here
25
- # ...
26
 
27
- return 'Image uploaded successfully'
28
 
29
 
30
- @app.route('/get_text', methods=['GET'])
31
- def get_text():
32
- image = Image.open('assets/img.jpg')
33
- inputs = image_processor(image, return_tensors="pt")
34
 
35
- with torch.no_grad():
36
- logits = model(**inputs).logits
37
 
38
- predicted_label = logits.argmax(-1).item()
39
 
40
- disease = model.config.id2label[predicted_label]
41
 
42
- return disease
43
 
44
 
45
- if __name__ == '__app__':
46
- app.run( host='192.168.1.1',port=8080)
 
1
+ # from flask import Flask, request
2
+ # from transformers import AutoModelForImageClassification
3
+ # from transformers import AutoImageProcessor
4
+ # from PIL import Image
5
+ # import torch
6
 
7
+ # app = Flask(__name__)
8
 
9
+ # model = AutoModelForImageClassification.from_pretrained(
10
+ # './myModel')
11
+ # image_processor = AutoImageProcessor.from_pretrained(
12
+ # "google/vit-base-patch16-224-in21k")
13
 
14
 
15
+ # @app.route('/upload_image', methods=['POST'])
16
+ # def upload_image():
17
+ # # Get the image file from the request
18
+ # image_file = request.files['image']
19
 
20
+ # # Save the image file to a desired location on the server
21
+ # image_path = "assets/img.jpg"
22
+ # image_file.save(image_path)
23
 
24
+ # # You can perform additional operations with the image here
25
+ # # ...
26
 
27
+ # return 'Image uploaded successfully'
28
 
29
 
30
+ # @app.route('/get_text', methods=['GET'])
31
+ # def get_text():
32
+ # image = Image.open('assets/img.jpg')
33
+ # inputs = image_processor(image, return_tensors="pt")
34
 
35
+ # with torch.no_grad():
36
+ # logits = model(**inputs).logits
37
 
38
+ # predicted_label = logits.argmax(-1).item()
39
 
40
+ # disease = model.config.id2label[predicted_label]
41
 
42
+ # return disease
43
 
44
 
45
+ # if __name__ == '__app__':
46
+ # app.run( host='192.168.1.1',port=8080)