denoising / app.py
Khalida1w's picture
Update app.py
7f24723 verified
import librosa
import tensorflow as tf
from tensorflow.keras.models import model_from_json
import soundfile as sf
import numpy as np
import os
import scipy
from scipy.io import wavfile
import gradio as gr
def audio_to_audio_frame_stack(sound_data, frame_length, hop_length_frame):
"""This function takes an audio and splits it into several frames
returning a numpy matrix of size (nb_frame, frame_length)."""
sequence_sample_length = sound_data.shape[0]
sound_data_list = [
sound_data[start:start + frame_length]
for start in range(0, sequence_sample_length - frame_length + 1, hop_length_frame)
]
sound_data_array = np.vstack(sound_data_list)
return sound_data_array
def audio_files_to_numpy(audio_dir, list_audio_files, sample_rate, frame_length, hop_length_frame, min_duration):
"""This function takes audio files in a directory and merges them
into a numpy matrix of size (nb_frame, frame_length) for a sliding window of size hop_length_frame."""
list_sound_array = []
for file in list_audio_files:
y, sr = librosa.load(os.path.join(audio_dir, file), sr=sample_rate)
total_duration = librosa.get_duration(y=y, sr=sr)
if total_duration >= min_duration:
list_sound_array.append(audio_to_audio_frame_stack(y, frame_length, hop_length_frame))
else:
print(f"The following file {os.path.join(audio_dir,file)} is below the min duration")
return np.vstack(list_sound_array) if len(list_sound_array) > 0 else np.array([])
def blend_noise_randomly(voice, noise, nb_samples, frame_length):
"""This function randomly blends voice frames with noise frames."""
prod_voice = np.zeros((nb_samples, frame_length))
prod_noise = np.zeros((nb_samples, frame_length))
prod_noisy_voice = np.zeros((nb_samples, frame_length))
for i in range(nb_samples):
id_voice = np.random.randint(0, voice.shape[0])
id_noise = np.random.randint(0, noise.shape[0])
level_noise = np.random.uniform(0.2, 0.8)
prod_voice[i, :] = voice[id_voice, :]
prod_noise[i, :] = level_noise * noise[id_noise, :]
prod_noisy_voice[i, :] = prod_voice[i, :] + prod_noise[i, :]
return prod_voice, prod_noise, prod_noisy_voice
def audio_to_magnitude_db_and_phase(n_fft, hop_length_fft, audio):
"""Convert audio into a spectrogram, returning the magnitude in dB and the phase."""
stftaudio = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length_fft)
stftaudio_magnitude, stftaudio_phase = librosa.magphase(stftaudio)
stftaudio_magnitude_db = librosa.amplitude_to_db(stftaudio_magnitude, ref=np.max)
return stftaudio_magnitude_db, stftaudio_phase
def numpy_audio_to_matrix_spectrogram(numpy_audio, dim_square_spec, n_fft, hop_length_fft):
"""Takes a numpy array of shape (nb_frame, frame_length) and returns
the matrix spectrogram for amplitude in dB and phase (each of shape (nb_frame, dim_square_spec, dim_square_spec))."""
nb_audio = numpy_audio.shape[0]
m_mag_db = np.zeros((nb_audio, dim_square_spec, dim_square_spec))
m_phase = np.zeros((nb_audio, dim_square_spec, dim_square_spec), dtype=complex)
for i in range(nb_audio):
m_mag_db[i, :, :], m_phase[i, :, :] = audio_to_magnitude_db_and_phase(
n_fft, hop_length_fft, numpy_audio[i])
return m_mag_db, m_phase
def magnitude_db_and_phase_to_audio(frame_length, hop_length_fft, stftaudio_magnitude_db, stftaudio_phase):
"""Reverts a dB spectrogram to audio."""
stftaudio_magnitude_rev = librosa.db_to_amplitude(stftaudio_magnitude_db, ref=1.0)
audio_reverse_stft = stftaudio_magnitude_rev * stftaudio_phase
audio_reconstruct = librosa.istft(audio_reverse_stft, hop_length=hop_length_fft, length=frame_length)
return audio_reconstruct
def matrix_spectrogram_to_numpy_audio(m_mag_db, m_phase, frame_length, hop_length_fft):
"""Reverts matrix spectrograms to a stacked numpy audio array."""
list_audio = []
nb_spec = m_mag_db.shape[0]
for i in range(nb_spec):
audio_reconstruct = magnitude_db_and_phase_to_audio(
frame_length, hop_length_fft, m_mag_db[i], m_phase[i])
list_audio.append(audio_reconstruct)
return np.vstack(list_audio)
def scaled_in(matrix_spec):
"""Global scaling applied to noisy voice spectrograms (scale between -1 and 1)."""
matrix_spec = (matrix_spec + 46) / 50
return matrix_spec
def scaled_ou(matrix_spec):
"""Global scaling applied to noise model spectrograms (scale between -1 and 1)."""
matrix_spec = (matrix_spec - 6) / 82
return matrix_spec
def inv_scaled_in(matrix_spec):
"""Inverse global scaling applied to noisy voices spectrograms."""
matrix_spec = matrix_spec * 50 - 46
return matrix_spec
def inv_scaled_ou(matrix_spec):
"""Inverse global scaling applied to noise model spectrograms."""
matrix_spec = matrix_spec * 82 + 6
return matrix_spec
def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
"""Use pretrained weights to denoise a noisy voice audio, and save the result."""
# Load model from JSON + weights
json_file = open(os.path.join(weights_path, name_model + '.json'), 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights(os.path.join(weights_path, name_model + '.h5'))
print("Loaded model from disk")
# Convert audio file(s) to numpy frames
audio = audio_files_to_numpy(
audio_dir_prediction,
audio_input_prediction,
sample_rate,
frame_length,
hop_length_frame,
min_duration
)
if audio.size == 0:
print("No valid audio frames found, skipping prediction.")
return
dim_square_spec = int(n_fft / 2) + 1
# Create amplitude (dB) and phase
m_amp_db_audio, m_pha_audio = numpy_audio_to_matrix_spectrogram(audio, dim_square_spec, n_fft, hop_length_fft)
# Global scaling to get distribution -1 to 1
X_in = scaled_in(m_amp_db_audio)
# Reshape for model prediction
X_in = X_in.reshape(X_in.shape[0], X_in.shape[1], X_in.shape[2], 1)
# Predict using loaded network
X_pred = loaded_model.predict(X_in)
# Rescale back the predicted noise
inv_sca_X_pred = inv_scaled_ou(X_pred)
# Remove noise model from noisy speech
X_denoise = m_amp_db_audio - inv_sca_X_pred[:, :, :, 0]
# Reconstruct audio
audio_denoise_recons = matrix_spectrogram_to_numpy_audio(X_denoise, m_pha_audio, frame_length, hop_length_fft)
# Combine all frames into a single 1D array, scaled up
nb_samples = audio_denoise_recons.shape[0]
denoise_long = audio_denoise_recons.reshape(1, nb_samples * frame_length) * 10
# Save to disk
sf.write(audio_output_prediction, denoise_long[0, :], sample_rate)
print(f"Saved denoised audio to: {audio_output_prediction}")
def denoise_audio(audio_input):
"""
Gradio callback function to denoise audio.
`audio_input` can be None, a dict {"name", "sample_rate", "data"}, or a tuple (sr, data).
"""
# 1) Handle None
if audio_input is None:
print("No audio was provided.")
return None
# 2) Handle dict vs tuple
if isinstance(audio_input, dict):
sr = audio_input["sample_rate"]
data = audio_input["data"]
else:
sr, data = audio_input
# Write out to a temp file
temp_wav = "temp.wav"
sf.write(temp_wav, data, sr)
# Compute duration
len_data = len(data)
t = len_data / sr # duration in seconds
print("t:", t)
# Paths & config
weights_path = os.path.abspath("./")
name_model = "model_unet"
audio_dir_prediction = os.path.abspath("./")
dir_save_prediction = os.path.abspath("./")
audio_output_prediction = "test.wav"
audio_input_prediction = [temp_wav]
sample_rate = 8000 # model was trained at 8k
min_duration = t
frame_length = 8064
hop_length_frame = 8064
n_fft = 255
hop_length_fft = 63
# Run prediction (denoising)
prediction(weights_path, name_model,
audio_dir_prediction,
dir_save_prediction,
audio_input_prediction,
audio_output_prediction,
sample_rate,
min_duration,
frame_length,
hop_length_frame,
n_fft,
hop_length_fft)
# Return the path to the denoised file so Gradio can play it
return os.path.abspath(audio_output_prediction)
# Example pre-loaded sample files
examples = [
[os.path.abspath("crowdNoise.wav")],
[os.path.abspath("CrowdNoise2.wav")],
[os.path.abspath("whiteNoise.wav")]
]
iface = gr.Interface(
fn=denoise_audio,
inputs="audio",
outputs="audio",
title="Audio to Denoised Audio Application",
description=(
"A simple application to denoise audio speech using a UNet model. "
"Upload your own audio or click one of the examples to load it."
),
article="""
<div style="text-align: center">
<p>All you need to do is to upload or record an audio file and hit 'Submit'.
After processing, you can click 'Play' to hear the denoised audio.
The audio is saved in WAV format.</p>
</div>
""",
examples=examples
)
iface.launch()