khalida1wwin commited on
Commit
fa0d485
·
1 Parent(s): d7d8acc

update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -138,7 +138,7 @@ def inv_scaled_ou(matrix_spec):
138
  return matrix_spec
139
 
140
 
141
- def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
142
  audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
143
  """ This function takes as input pretrained weights, noisy voice sound to denoise, predict
144
  the denoise sound and save it to disk.
@@ -154,9 +154,9 @@ audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_fra
154
  print("Loaded model from disk")
155
 
156
  # Extracting noise and voice from folder and convert to numpy
157
- audio = audio_files_to_numpy(audio_dir_prediction, audio_input_prediction, sample_rate,
158
- frame_length, hop_length_frame, min_duration)
159
-
160
  #Dimensions of squared spectrogram
161
  dim_square_spec = int(n_fft / 2) + 1
162
  print(dim_square_spec)
@@ -191,8 +191,8 @@ audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_fra
191
 
192
  def denoise_audio(audioName):
193
  testNo = audioName
194
- audio_dir_prediction = os.path.abspath("/")+ str(testNo) +".wav"
195
- sample_rate, data = wavfile.read(audio_dir_prediction)
196
  len_data = len(data) # holds length of the numpy array
197
 
198
 
@@ -204,7 +204,7 @@ def denoise_audio(audioName):
204
  dir_save_prediction = os.path.abspath("/")
205
  audio_output_prediction = "test"+ testNo+".wav"
206
  audio_input_prediction = [testNo +".wav"]
207
- sample_rate = 8000
208
  min_duration = t
209
  frame_length = 8064
210
  hop_length_frame = 8064
@@ -213,10 +213,10 @@ def denoise_audio(audioName):
213
 
214
  dim_square_spec = int(n_fft / 2) + 1
215
 
216
- prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
217
  audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft)
218
  print(audio_output_prediction)
219
- return audio_output_prediction
220
 
221
 
222
  examples = [
 
138
  return matrix_spec
139
 
140
 
141
+ def prediction(weights_path, name_model, audioData, dir_save_prediction, audio_input_prediction,
142
  audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
143
  """ This function takes as input pretrained weights, noisy voice sound to denoise, predict
144
  the denoise sound and save it to disk.
 
154
  print("Loaded model from disk")
155
 
156
  # Extracting noise and voice from folder and convert to numpy
157
+ # audio = audio_files_to_numpy(audio_dir_prediction, audio_input_prediction, sample_rate,
158
+ # frame_length, hop_length_frame, min_duration)
159
+ audio = audioData
160
  #Dimensions of squared spectrogram
161
  dim_square_spec = int(n_fft / 2) + 1
162
  print(dim_square_spec)
 
191
 
192
  def denoise_audio(audioName):
193
  testNo = audioName
194
+ # audio_dir_prediction = os.path.abspath("/")+ str(testNo) +".wav"
195
+ sample_rate, data = audioName[0], audioName[1]
196
  len_data = len(data) # holds length of the numpy array
197
 
198
 
 
204
  dir_save_prediction = os.path.abspath("/")
205
  audio_output_prediction = "test"+ testNo+".wav"
206
  audio_input_prediction = [testNo +".wav"]
207
+
208
  min_duration = t
209
  frame_length = 8064
210
  hop_length_frame = 8064
 
213
 
214
  dim_square_spec = int(n_fft / 2) + 1
215
 
216
+ prediction(weights_path, name_model, data, dir_save_prediction, audio_input_prediction,
217
  audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft)
218
  print(audio_output_prediction)
219
+ return audio_output_prediction[0]
220
 
221
 
222
  examples = [