Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,13 @@
|
|
1 |
import streamlit as st
|
2 |
|
3 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Function to generate a response
|
6 |
def generate_response(input_text):
|
@@ -20,6 +27,7 @@ def generate_response(input_text):
|
|
20 |
top_p=0.95,
|
21 |
no_repeat_ngram_size=2,
|
22 |
pad_token_id=tokenizer.eos_token_id,
|
|
|
23 |
#early_stopping=True,
|
24 |
do_sample=True
|
25 |
)
|
@@ -30,20 +38,14 @@ def generate_response(input_text):
|
|
30 |
# Extract the generated response after the [Bot] marker
|
31 |
bot_response_start = full_generated_text.find('[Bot]') + len('[Bot]')
|
32 |
bot_response = full_generated_text[bot_response_start:]
|
33 |
-
|
34 |
-
# Trim the response to end at the last period within the specified max_length
|
35 |
-
last_period_index = bot_response.rfind('.')
|
36 |
-
if last_period_index != -1:
|
37 |
-
bot_response = bot_response[:last_period_index + 1]
|
38 |
-
|
39 |
-
return bot_response.strip()
|
40 |
|
41 |
# Load pre-trained model tokenizer (vocabulary) and model
|
42 |
model_name = 'KhantKyaw/Chat_GPT-2'
|
43 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
44 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
45 |
|
46 |
-
st.title("
|
47 |
|
48 |
# Initialize chat history
|
49 |
if "messages" not in st.session_state:
|
|
|
1 |
import streamlit as st
|
2 |
|
3 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
+
model_name = 'KhantKyaw/Chat_GPT-2'
|
5 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
6 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
+
|
8 |
+
special_tokens_dict = {'bos_token': '<BOS>', 'eos_token': '<EOS>', 'sep_token': '<SEP>', 'pad_token': '<PAD>'}
|
9 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
10 |
+
model.resize_token_embeddings(len(tokenizer))
|
11 |
|
12 |
# Function to generate a response
|
13 |
def generate_response(input_text):
|
|
|
27 |
top_p=0.95,
|
28 |
no_repeat_ngram_size=2,
|
29 |
pad_token_id=tokenizer.eos_token_id,
|
30 |
+
eos_token_id=tokenizer.eos_token_id,
|
31 |
#early_stopping=True,
|
32 |
do_sample=True
|
33 |
)
|
|
|
38 |
# Extract the generated response after the [Bot] marker
|
39 |
bot_response_start = full_generated_text.find('[Bot]') + len('[Bot]')
|
40 |
bot_response = full_generated_text[bot_response_start:]
|
41 |
+
return bot_response
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Load pre-trained model tokenizer (vocabulary) and model
|
44 |
model_name = 'KhantKyaw/Chat_GPT-2'
|
45 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
46 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
47 |
|
48 |
+
st.title("Chat_GPT-2 Bot")
|
49 |
|
50 |
# Initialize chat history
|
51 |
if "messages" not in st.session_state:
|