Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import PyPDF2
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import faiss
|
7 |
+
from gtts import gTTS
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Initialize the model and tokenizer
|
11 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModel.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Function to get embeddings
|
16 |
+
def get_embedding(text):
|
17 |
+
inputs = tokenizer(text, return_tensors='pt')
|
18 |
+
with torch.no_grad():
|
19 |
+
embeddings = model(**inputs).last_hidden_state.mean(dim=1).numpy()
|
20 |
+
return embeddings
|
21 |
+
|
22 |
+
# Initialize FAISS index
|
23 |
+
embeddings_dimension = 384 # for MiniLM
|
24 |
+
index = faiss.IndexFlatL2(embeddings_dimension)
|
25 |
+
|
26 |
+
# Title of the app
|
27 |
+
st.title("Study Assistant for Grade 9")
|
28 |
+
|
29 |
+
# File uploader widget
|
30 |
+
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
31 |
+
|
32 |
+
if uploaded_file is not None:
|
33 |
+
# Read the uploaded PDF file
|
34 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
35 |
+
text = ""
|
36 |
+
|
37 |
+
# Extract text from each page
|
38 |
+
for page in pdf_reader.pages:
|
39 |
+
text += page.extract_text() if page.extract_text() else ""
|
40 |
+
|
41 |
+
st.subheader("Extracted Text:")
|
42 |
+
st.write(text)
|
43 |
+
|
44 |
+
# Generate embedding for the extracted text
|
45 |
+
embeddings = get_embedding(text)
|
46 |
+
index.add(embeddings) # Add embedding to the FAISS index
|
47 |
+
|
48 |
+
st.success("Text extracted and embeddings generated!")
|
49 |
+
|
50 |
+
# Subject selection and query input
|
51 |
+
subject = st.selectbox("Select Subject", ["Math", "Science", "English"])
|
52 |
+
query = st.text_input("Type your query")
|
53 |
+
|
54 |
+
if st.button("Submit"):
|
55 |
+
if query:
|
56 |
+
# Get embedding for the query
|
57 |
+
query_embedding = get_embedding(query)
|
58 |
+
|
59 |
+
# Search for the nearest neighbors in the FAISS index
|
60 |
+
D, I = index.search(query_embedding, k=5) # Retrieve top 5 matches
|
61 |
+
|
62 |
+
st.subheader("Top Matches:")
|
63 |
+
for idx in I[0]:
|
64 |
+
if idx < len(embeddings): # Ensure index is valid
|
65 |
+
st.write(f"Match Index: {idx}, Distance: {D[0][idx]}") # You can display the match details
|
66 |
+
|
67 |
+
# Convert response to speech
|
68 |
+
response_text = f"You asked about '{query}' in {subject}. Here are your top matches."
|
69 |
+
tts = gTTS(text=response_text, lang='en')
|
70 |
+
tts.save("response.mp3")
|
71 |
+
os.system("start response.mp3") # Adjust for different OS
|
72 |
+
|
73 |
+
st.success("Response generated and spoken!")
|
74 |
+
|
75 |
+
# Note: To handle errors or improve this further, add appropriate try-except blocks and validations.
|